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Abstract: Setting the optimization-based clustering methods under the classification maximum 
likelihood approach, WC define and study a general Classification EM algorithm. Then, WC dcrivc 
from th’s algorithm two stochastic algorithms, incorporating random perturbations, to rcducc the 
initial-position dcpendencc of the classical optimization clustering algorithms. Numerical cxpcri- 

mcnts, rcportcd for the variance criterion, show that both stochastic algorithms perform well 

compared with the standard k-means algorithm which is a 
EM algorithm. 
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1 m Introduction 

particular version of the Cltissification 

likelihood: Optimization in statistics: 

Partitioning methods of cluster analysis are based on optimizing a criterion that 
measures the compatibility of clustering parameters with data describing the 
objects (see, for instance, Jain and Dubes, 1988, or Arthanary and Dodge, 198 1. 
Chapter 5). Generally, the optimal solution cannot be obtained in a closed form 
so that some iterative clustering algorithm t k-means type algorithm, cxchang: 
algorithm (Spith, 1985), . . . ) is employed to find the optimal partition. There is 
no guarantee that an iterative clustering algorithm will reach a global optimum. 
The solution provided by a partitioning algorithm depends upon its initial 
position and, in some situations, can happen to give a poor local optimum value 
of the criterion to be optimized. The present paper is concerned with this 
optimization problem. 
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Wc propose stochastic algorithms to optimize currently used partitioning 
criteria. Thcsc algorithms arc expcctcd to produce scnsihk kJCal tjptimum 

solutions from any initial position. They have hwn cunccivcd in the gcncral 

setting of thC CIassification approach for mixture decomposition (Scott and 
Symons, 1971; Symons, 1981 I. They will appear to be variations of a general 
Classification EM algorithm (CHU to optimize Classificatio 
mum Likelihood (CML) criteria in context. In this paper, we 
on algorithms designed to find di an adequacy 
criterion bctwccn the clusters and re concerned with an 
optimization problem on a discrete cc (the set of partitions of II objects into 
K clusters). WC consider the partiti in the mixture context to take 
advantage of the posterior probabilities that the objects arise from one of the 
mixture components for designing random assignments to ‘41e clusters. 

‘T?-eforc. WC do not discuss the statistical properties of the partitions 

tions dcrivcd fro 
is refcrrcd to the papers Williamson ( 1978, 1986), 

(1991) among others for a comparison of th 
maximum likelihood for cluster analysis. 

in a general setting and we show that the classical vari;ance criterion can be 
expressed (as many others) as a particular C L criterion arising from a 
Gaussian mixture. In Section 3, we present and study the general Classification 
EM algorithm NZEMb to optimize the CML criterion which parallels the EM 
algorithm to optimize the likelihood of a mixture (Dempster. Laird and Rubin. 
1977). In Section 4, we derive two stochastic versions of CEM. In Section 4.1, we 
describe the SEM algorithm (Ccleux and Dicbolt, 1985) which turns out to be a 
stcdastic version of CEM as well as EM. In Section 4.2, we present the CAEM 
algorithm which can be regarded as a ‘simulated annealing’ version of the CEIL 
algorithm. Section 5 is devoted to numerical experiments to compare the 
practical behaviour of CEM, SEM and CAEM algorithms. We summarize the 
main points of this paper in a concluding section. 

2. Classification maximum likelihood criteria 

Clustering methods based on maximum likelihood consider the situation where 
the data are P-valued vectors x,, . . . , x,~ assumed to be a sample from a 
mixture of densities 

where the px’s are the mixing weights (0 < pr: < 1 for all k = I,. . . , K and 



CA PA = 1) and the J’C X, a, 1 are densities from the same pararnctric family: for 
instance f(x, aA 1 denotes the &dimensional normal density with unknown 
mean pA and covariance matrix r; and a, = &., fi 1. In the mixture maximum 
likelihood (m.1.) approach. the parameters 1~ and ac, art’ chosen to maximize 
the log-likelihood 

(2.2) 

using, generally, the EM algorithm f empster, Laird and Rubin. 194T). In this 
approach, considered by many authors. see. for instance, the book of Tittcring- 
ton, Smith and Makov (l!NW, a partition P = (P,. . , . . PK 1 of the data can 
directly be deduced from the m.i. estimates of the mixture parameters by 
assigning each x, to the component which provides the greatest posterior 
probability that x, arises from it. We do not further consider this approach in 
this paper since we arc mainly concerned with the optimization of standard 
clustering criteria which cannot be expressed as mixture likelihoods. 

In the classification maximum likelihood KIML) approach, the indicators t,, 
identifying the mixture component origin for x, (1 I i I d, are treated as 
unknown parameters. Two different CML criteria have been proposed accord- 
ing to the sampling scheme. Under the separate sampling scheme, the sample 

Xl , . . .,x,, is formed by separately taking fzx observations from the k th compo- 
nent where 12~ is fixed before sampling. In this situation, the CML criterion 
takes the form (see, for instance, Scott and Symons, 1971) 

h’ 

(2.3) 

where P=W,..... PK ) is a partition of x,, . . . , x,~ associated to the indicator 
vectors z,, . . . , z,,: PA = {x,/z,~ = I), and a = (a,, . . . , aK ). In this formulation. 
the proportions px’s do not appear explicitly and, thus, they are implicitly 
assumed to be equal. Now, once the aA’s and the 2,‘s are estimated, the 
proportions can be estimated by #P&z (1 5 k I K h Under the mixture sam- 
pling, the sample x,, . . . , x,, is taken at random from the mixture density (2.1). so 
that the number of observations from the components has a multinomial 
distribution with sample size lt and probability parameters pi.. . . . pK. In this 
situation, the CML criterion takes the form (Symons, 1981) 

which can be written 

C,(P,p,‘a)=C,(P,a)+ C!Z1, log pp 

(2.4) 

(2.5) 

where p=(pI,...,pK) and where 11~ = #PA ( 1 5 k I K b. Following Bryant 
(19911, we can refer to this criterion as to the penalized CML since. from (2.5). 



it introduces a penalty term &rr, Iog pk. Moreover, the CML criterion defined 
by (2.3) can be thought of as a particular C, CML criterion for a mixture of 
densities with equal proportions since, in this case, the penalty term occurring in 
t 2.5) is useless. 

It appears that the main interest of the CML presentation of cluster analysis 
is that most of the standard clustering criteria can be vicwcd as particular C 
criteria (see, for instance, Scott and Sy ens, 1971; Cclcux, 1988; and, 
discrete data, Cefcux and Govacrt, 1991). Thus, the classification approach of 
mixtures is a fruitful line which reveals some of the statistical aspects of many 
classical clustering criteria. But the topic of Phc prcscnt paper is not to analyze 
the features of clustering criteria, Hcrc, WC arc conecrned with optimization 
algorithms in ctustcring, and, for simplicity, wc will focus on the most popular 
clustering criterion, the so-called variance criterion, to bc minimized, which 
takes the form 

(2-6) 

where g, is the center of the cluster I$ (1 < k ,< K ). 
So, it is noteworthy to stress that all the algorithms discussed hcrcunder arc 

designed to optimize a CML criterion and can be particularized for the opti- 
mization of any classical clustering criterion. Thus, the following proposition, 
which displays the CML criterion associated to the variance criterion, can be 
regarded as a particular version of a more general proposition which expresses 
the relations bctwecn CML criteria and classical clustcriag criteria. 

Proof, In this situation, we have CI~ = (pk, 01 and pk = l/K (1 5 k 5 K). For a 
fixed partition P = (P,, . . . , PK), it can easily be proved that the m.l. estimate of 
pA. is the center of cluster Pk. In these conditions, C, can be written 

1 
C,(P. p9 a) = - zW(P) -nd log(&) +A, (24 

where A denotes a constant and w-here W( PI has been defined in (2.6). 
Proposition 1 follows immediately from (2.7) and it is direct to see that the 
estimate of u’, optimizing C,( P, p, a) is W( P)/d. 

Proposition 1 shows that the optimization of the variance cgitcrion can be 
considered under the CML approach. Thus, it will be seen in Section 4 that this 
proposition allows us to propose some stochastic algorithms to optimize the 
variance criterion. These algorithms will appear in a natural way as stochastic 



versions of a general clustering algorithm, that WC present now, devoted to 
optimizing CML criteria. 

3. The Classification EM algorithm 

The EM algorithm is a general algorithm to compute the m.1. estimates of pI,, 
uk (1 s k s K) under the mixture approach. The Classification 
algorithm is a general algorithm TO compute the estimates IQ, a, and to find the 
clusters PA ( 1 ,< k s K 1 under the classification approach. This algorithm, de- 
scribed hereunder, can be regarded as a classification version of the EM 
algorithm: it incorporates a classification step between the E-step and the 
M-step of the EM algorithm using a maximum a posteriori (MAP) principle. 

Starting from an initial partition P”, the rtlth iteration of CEM (n? > 0) is 
defined as follows: 

E-step. Compute for i = 1,. . . , II and k = 1,. . . , K the current posterior proba- 
bilities t.[Yxi) that xi belongs to PA 

(3.1) 

for the current parameter estimates p”’ and Q”‘. 

C-step. Assign each Xi to the cluster which provides the maximum posterior 
probability r~( Xi)’ 1 5 k 5 K, (if the maximum posterior probability is not 
unique, we choose the cluster with the smallest index). Let P”’ denote the 
resulting partition. 

M-step. For k = 1, . . . , K compute the maximum likelihood estimates 
(pT+‘, a?+‘) using 

1?1 + I #PT 
Pk =- 

n 

Obviously, the exacl t 

the sub-samples PT. it leads to 

for all k = l,...,K. (3.2) 

formulae for the CI;,)I+ ” s depend on the involved parametric 
family of densities. For instance. for a Gaussian mixture with means pA 
(1 ( k ,< K) and a common covariance matrix 0’1, we get 

1 
Kr+’ c = z@ x Ep,‘,xi. 

for all k = l,.... K, 
I I, 

and 

( ) oz 
MI + I 

(3.3) 

(3.4) 

Recall that d is the dimension of the space ” where the sample takes values. 



Some comments are in order: 

(i) From the practical point of view, it turns out that CEM is not a new 
algorithm. For instance, the variance criterion is often optimized by pciforming 
a k-means type algorithm. Starting from a position PO, an iteration m (m >, I ) 
of the k-means algorithm can be summarized as follows: 
( 1) Representation step. Compute the centers gF+ ’ of the clusters PF ( 1 < k 5 

(2) Assignment step. Define PI” + ’ = ( Py + ‘, . . . , P/ + ’ ), where 

P/j+’ = {&/II x; -gp+’ 11 z I II x; -g/I+’ II L), for all k’#k). 

From Proposition 1, it is straightforward to see that the k-means algorithm is 
exactly the CEM algorithm for a Gaussian mixture with equal proportions and a 
common covariance matrix of the form 0’1 ((T’ unknown) since the cstimatbn 
of the scale palsameter CT’ does not affect the assignments of the xi’s to the 
clusters Pk’s. 

(ii) It turns out that the sample points arc assigned to the clusters on the 
basis of the posterior probabilities belonging to these clusters. These posterior 
probabilities are directly derived from the mixture model and have a primaby 
part in the definition of the stochastic versions of the CEM algorithm. 

We turn now to the theoretical properties of the CEM algorithm and 
sequences generated. These properties are summarized in the two following 
propositions. 

Proposition 2. Any sequence ( P”‘, p”‘, a”‘) of the CEM algorithm increases the 
CML criterion C, and the sequence C,f Pt’17 p”‘, a”‘) corlrerges to a stationary 
value. Moreorer, if the m.1. estimates of the parameters are well-defined, the 
sequence f P”‘, p”‘, a”’ J coni’erges to a stationary position. 

Proof. We first show that the criterion CZ is increasing. Since i p;I" ‘, ar’ ‘1 is 
maximizing c,I E p ;,, log{ pk f(x;, ak )), we have from (2.4) 

C,( P”‘, p”‘+‘, a”‘+‘) 2 C,( P”‘, p”‘, a’“), 

and since xi E PF+ ’ is equivalent to t? + ‘(Xi) 2 t;’ ‘(xi) for all k ’ + k which 
implies 

tt1 + 

PX 

I 

f( xi, a;‘+‘) >p&!+‘f(x;, a:!+‘), 

we have 

C,( ptrr+I, pttl+ I, att1+ I) 2 C,( ptt1, pttl+l, a”‘+ I)_ 

Since there is a finite number of partitions of the sample into K clusters, the 
increasing sequence Cz( PI”, p’“, a’“) takes a finite number of values, and thus, 
converges to a stationary value. Hence 

C,( pItI, Pltl, atl’) = c,( ptn, ptn+ i, attr+ I) = c,( ptn+ I, ptn+ I, atti+ I) 



for m large enough; fr-om the first equality and from the assumption that the 
m.1. estimate p”’ and I?“’ are well-dcfincd, we dcducc that p”’ =p”‘+ ’ and 
Q ttt = p+ I_ From the second equality and the very definition of the C-step, it 
follows that Ptt’ = Pm + ‘. 

Remark. The assumption that the m.l. estimator of the parameter a of the 
density f( l , a) is well-defined appears to be mild, since it is true for a large class 
of densities (for instance, densities from an exponential family). 

From Proposition 2, it is only possibly to state that if the sequence 
(P”‘, p”‘, a”‘) converges. it convcrgcs to a critical point of the CML criterion. In 
fact, one hopes that the sequence converges to a point that produces the global 
optimum (or at least a sensible optimum) of the C?vlL criterion. Proposition 3 
gives conditions that, if the itcratcs get close enough to a point that produces a 
local optimum, the CEM sequence will converge to it. Before stating this 
proposition, we need some additional notation and definitions. Let be the set 
of matrices U = [Q.] in RtrK with nonncgativc entries which sum to one down 
each column, and have nonzero sums across each row. Windham ( 1987) called U 
a standard classification matrix. Now, let consider the criterion to be maximized 

(3.5) 

where U E M. 

Proposition 3. Assume thut C;C U, p, a) has N lad mu-imrrm at (U *, p‘, a * ) 
and that the Hessian of Ci< U, p, a) is ncgatire at f U *, p ** a * ). Then, thcw is CI 
neighborrrhood V of (U *, p *, a * ) so hut, fc;)r nny (U “, p”, a”) it1 V, the 

resulting sequence ( P”‘, p “‘. a “’ ) of the CEM nlgorithn conrcrg~~s to ( U * , p * , a * ) 
at a linear rate. 

Proof. For fixed p and Q, WC have for any U E M 
. 

CJ(U, p, a) 5 i k llik. max [log(pktf(X,, 4Z,t)}]. 
k=l ;=I Ii’; l.....K 

i.e. 
I1 

Ci(U, p, a) 5 C max [log(p,$(x,, q))]. ;=, k’=l..... K 

Thus, for fixed p and Q, the U matrix which maximizes CJU, p, a) rcprcscnts a 
partition of (x,, . . . , x,,) 

I if k = argk,=yax li [l%(IQ@fO,- %Ol]’ 
LliX = . . . . . 

0 otherwise. 

It implies that 
(3.h) 
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where PK is the set of partitions into K clusters of (x,, . . . , x,,). Hence, the CEM 
algorithm can be regarded as an alternating optimization algorithm to maximize 
the criterion CJU, p, a) that we can describe as follows (we consider the mth 
iteration) 

u IPI + 1 = argm;xCi(U, p”‘, a”‘), (3.7a) 

(P IPI + I ,a 111 + 1 ) = arg~~~JC~(U”“‘, PT a). (3.7b) 
. 

The stage described by (3.7.a) is achieved with the E-step and C-step of the 
CEM algorithm and the stage described by (3.7b) is achieved using the M-step 
of CEM. 

From (3.7a) and (3.7b), CEM turns out to be a grouped coordinate ascent 
method to optimize C@.J, p, a). Thus, we are in position to apply the Theorem 
2.2 of Bezdek et al. (1987, pp. 473), which states the desired result for a 
sequence (U “I, ~3”‘. at)‘) generated by the alternating optimization algorithm 
defined by Eqs. (3.7a) and (3.7b). And, Proposition 3 follows from the equiva- 
lence (3.6). 

From the practical point of view, the solution provided by the CEM algorithm 
does depend upon its initial position. This is dramatically true if the clusters are 
not well separated. Usually, to overcome this limitation, the CEM algorithms is 
repeated several times from different initial positions and the clustering which 
provides the greatest value of the CML criterion is selected. Moreover, if most 
of the CEM runs lead to the same clustering, we can have some confidence that 
the global optimum has been achieved. In the next section, we take advantage of 
the probabilistic background of CEM to introduce stochastic versions of this 
clustering algorithm which are mainly aimed at giving an answer to the initial- 
position dependence of CEM. 

4. Two stochastic xssions of CEM 

4.1. TIze SEM nlgorithm 

The SEM algorithm has been proposed by Celeux and Diebolt (1985) to 
estimate the parameters of a mixture as an aiternative to the EM algorithm. It 
has been designed to give an answer to [he fundamental limitations of EM 
(strong dependence on initial position, convergence to saddle-points of the 
likelihood function, slow convergence,. . . J which can occur when the mixture 
components are not well separated. The SEM algorithm incorporates a stochas- 
tic step (S-step) between the E- and M-steps of the EM algorithm. This S-step is 
directed by the following Random Imputation Principle (RIP): Generate a 
completed sample (x,, z;“), . . . , ( x,~, z::> by drawing it at random from the 
posterior distribution (tr< x,), k = 1, . . . , K) for all i ( 1 2 i _< n) given the ob- 



served sample (X I,. . . , x,,) and for a current fit ( p”‘, a”‘) of the mixture parame- 
ters. Hereunder, we describe the three steps of the SEM iteration (p”l, a”‘) + 
(p 1)1 + I , a”‘+’ ) starting from an initial position ( p”, a”). 

E-step. Compute for i = 1,. . . , II and k = 1,. . . , K the posrerior probabilities 
that x, belongs to PA 

tr(x;) = 
p;;"f(x;, a;I”) 

c 
K 
k,_ ,p;lff(q, 42::) ’ (4-l) 

S-step. For i = 1 , . . ., N assign at random each xi to one of the clusters 
P ,t.. . , PK with probabilities ( tT(xi), k = 1 , . . . , K). Denote Pi” the resulting 
partition. 

M-step. For k = 1 , . . . , K compute the m.1. estimates (,I’+ *, a;l’+ I) using the 
sub-samples Pi”. 

For the Gaussian mixture with a common covariance matrix o’Z to which WC 
pay special attention, it leads to the formulae (3.21, (3.3) and (3.4) of the M-step 
of the CEM algorithm. It is clear that SEM can be thought of as a stochastic 
version of CEM as well as EM: The S-step appears to be simply a stochastic 
version of the C-step. Thus, from Proposition 1, it is straightforward to define a 
version of SEM optimizing the variance criterion which can be viewed as a 
stochastic k-means algorithm. 

SEM has an intriguing intermediate position between EM and CEM. It 
appears to be a natural stochastic version of both algorithms though they are 
designed to optimize different criteria: The log-likelihood L defined in (2.2) for 
EM and the CML criterion C, defined in (2.4) for CEM. This position can be 
explained from the following relation. Direct calculations (see Hathaway, 1986) 
show that 

r 

Lb9 4 = Ci( T, p, a) - i i tx( xi) log t,cxi), 
i=l kc1 

(4.2) 

where T=(t,(xi), k = l,..., K; i = l,..., rz) denotes the posterior probabilities 
matrix associated to ( p, a) via equation (4.11, L( p, a) is the log-likelihood given 
in (2.2) and where the criterion defined in (3.5) 

(4.3) 

is exactly the CML criterion C, defined in (2.4) if T defines a partition of 
(x,7 . . . , x,,) (i.e. for each xi, theri exists k (1 I k I K ) such that t,(x,) = 1). The 
relation (4.2) leads to the following comments. First, remark that if T defines a 
partition of (x,, . . . , x,,), we have t,(x;) log t&x,) = 0 for all i ( 1 I i < d and k 
(l<k_<K)(b y convention 0 log 0 = 0 since lim t log 2 = 0 as t --+ 0) and, thW 

we have 

C,(T, p, a) = C(T, p, a) = L( P, a). (4.4) 



Hence, any SEM iteration produces the same value for the CML criterion C, 
and the likelihood L. Moreover, maximizing the right-hand side of (4.2) under 
the constraint that T defines a partition of (x,, . . . , x,,) is equivalent to maximiz- 
ing C,( T, p, a). On the other hand, if ( p”, a* ) denotes the vector maximizing 
L( p, a), then T’ defined by 

tL(Xj) = 
1 if k=argk,=yax $&) for all i= l,...,rz 

. ..-. 
and k = l,...,K, (4.5) 

0 otherwise 

maximizes Ci(T, p*, a*). 
On a contrary, we can stress the differences between the partitions designed 

by CEM and by SEM. The convex hulls of the clusters generated by CEM are 
disjoints, whereas the clusters generated by SEM are generally intricated. From 
this point of view, it turns out that the sequence of the mixture estimates via 
SEM is closer to the EM estimates than the CEM estimates. 

A detailed account of convergence aspects of the sequence (p”‘, a”‘) gener- 
ated by SEM can be found in Celeux and Diebolt ( 198% and principally in 
Celeux and Diebolt (1986). Here, we summarize the most significant results. 
First, it is important to point out that owing to the S-step, the sequence 
( p”‘, a”‘) does not converge pointwise: ( p”‘, a!“‘) is a random vector, and so, P’,, 
is a random partition. The process (p”‘, a”‘) generated by the SEM iterations 
Ul= 1, 2,... on the basis of a given sample x ,, . . . , x,, of size 12 is an homoge- 
neous Markov chain for which ergodicity holds. Thus ( p”‘, a’“) converges in 
distribution, as the iteration index m + x, to the unique stationary distribution 
V,,. Since the sample x1, . . . , x,, is fixed, ( p”‘, a”‘) cannot be expected to 
converge in a stronger way (e.g. in probability or with probability 1). A natural 
pointwise estimator of (p, Q) derived from V,, is the mean ( p, a),, of Vf,,. From a 
theorem of Redner and Walker (1984, Theorem 5.2, p. 23) on the asymptotic 
behaviour of the EM algorithm, it has been proved (Celeux and Diebolt, 1986) 
that if X denotes a random vector drawn from the stationary distribution V,,, 
and if the EM algorithm has only one stable fixed point which is necessarily the 
unique consistent solution ( p *, a* i,, of the likelihood equations, then G( X - 
(P*, a* ),,) converges in distribution, as the sample size n -+ 00, to a Gaussian 
random variable with mean 0 and regular covariance matrix r which can he 
expressed in terms of the true mixture parameters. 

In practical situations in order to derive, in a sample way, from the SEM 
algorithm a reliable pointwise estimate of the mixture parameters and the 
associated partition, we used an hybrid algorithm. We ran the SEM algorithm a 
few dozen iterations, so that the sequence (p”‘, a”‘) has reached stationarity, 
and then we ran the CEM algorithm from the position which achieved the 
greatest value of the CML criterion among these SEM iterations. 

Numerical experiments (Celeux and Diebolt, 1985) have shown that, consid- 
ered as a stochastic version of EM, SEM performs well and overcomes most of 
the limitations of the EM algorithm. In the classification approach of the 
mixture problem, SEM is expected to perform well in the same mtiiiiicr and 



especially to avoid the sub-optimal solutions that the CEM algorithm happens to 
provide. In Section 5, we report numerical experiments performed to assess the 
practical ability of the k-means version of SEM to overcome the limitations of 
CEM. 

4.2. Simulated annealing 1 qersiorz of CEM 

The algorithm, that we propose now, is based upon the SEM algorithm but, in 
order to obtain direct pointwise estimates of the mixture parameters, the 
variances of the random assignments are decreasing to zero as the number of 
iterations increases to infinity. This is achieved by using a sequence (T,,,, HZ 2 0) 
of temperatures decreasing to zero as m tends to infinity from Q = 1, as it is 
performed in simulated annealing (cf. Van Laarhovcn and Aarts, 1987). For this 
reason, we called this algorithm the CAEM algorithm (Classification Annealing 
EM). 

Starting from an initial partition, the mth iteration of CAEM (m > 0) is the 
following: 

AE-Step. Compute for i = 1,. . . , n and k = 1,. . . , K the following scores s;!‘(x;) 
associated to the current posterior probabilities tr(x;) that xi belongs to P;ll 

(4-W 

C-Step. For i = 1,. . . , r-1 assign at random each xi to one of the clusters 
P 1,. . . , PK with probabilities (sF(x;), k = 1,. . . , K L Denote PI” the resulting 
partition. 

M-Step. For k = l,..., K, compute the m.l. estimates ( p;,“’ I, a;l+‘) using the 
sub-sample Pr. It is exactly the same step than the M-Step of the CEM and 
SEM algorithms. 

For T = 1, the CAEM iteration is exactly the SEM iteration, whereas as 7 
tends to be 0, it is exactly the CEM iteration. Thus, when the sequence (T,,,) 
decreases from 1 to 0 as the iteration index m grows, we go from pure SEM at 
the beginning towards pure CEM at the end. As mentioned above, CAEM 
exhibits some striking similarities with simulated annealing. Simulated annealing 
is a general approach for solving approximately large combinatorial optimization 
problems when no additional information about the structure of the function to 
be optimized is used. Experiments of simulated annealing in clustering have 
been performed by Klein and Dubes (1989). These authors used a classical 
simulated annealing scheme that we sketch hereafter. 

Starting from an initial partition P0 and having chosen an initial temperature 
r(,, a clustering c riterion, say W(P), is minimized using simulated annealing in 
the following way (we described the mth iteration of the algorithm): Perturb the 



partition P”’ I to partition P’. If JW = W( P”‘) - W( Pnf _ I) 5 0, accept parti- 

tion P”‘, else accept partition P”’ with probability exp( -#!+,,,I, where r,,, is 
the current temperature of the system. Define T,,, + I = fh,,,) where f is a 
monotone decreasing function. 

The simulated annealing algorithm stops when the system is frozen. The 
simulated annealing method shares with CAEM the basic property of not 
terminating when reaching the first local optimum they encounter. In both 
cases, this is possible since the transitions PI” + P”‘+ ’ corresponding to a 
decrease (resp. increase) of the function to be maximized (resp. minimized) can 
be accepted, in some limited fashion, with non-zero probability. Mot-cover, in 
both cases the probability of accepting such transitions decreases to zero as the 
algorithm proceeds. 

By contrast, CAEM is a tailored algorithm designed to find a stable fixed 
point of the CML criterion C,, by taking advantage of the basic properties of 
the CEM algorithm (especially, that each CEM iteration increases the CML 
criterion). Finally, CAEM could be expected to be more efficient than simulated 
annealing since it is based on the dynamical system CEM which increases the 
CML criterion to be maximized at each iteration. From this point of view, it is 
important to notice that CAEM does not prcscnt one of the drawback of 
simulated annealing (outlined by Klein and D&es, 1989) which concerns the 
time spent on calculating the cost for transitions that arc cvcntually rejected, 
particularly with small values of the temperature. As a matter of fact, there is 
only one transition considered at each CAEM iteration. 

Now, for both algorithms, the crucial part is the cooling schedule and 
especially the rule for decreasing the temperature. For simplicity, when per- 
forming CAEM, we have chosen a decreasing rule defined by T,,,, , = UT,,, with 
0.9 I R I 1 since it is well known that to give good performance, simulated 
annealing type algorithms need a slow convergence rate of the sequence (T,,,) to 
0 kc Van Laarhoveir and Aarts, 198’7). 

On the other hand, we have to notice that the cooling schedule is also 
depending of the starting temperature Q. This parameter has to be chosen 
carefully for simulated annealing. For instance, if r,, is too low the annealing 
will terminate in a sub-optimal solution. For CAEM, it is natural to choose 
r(, = 1 from the very definition of this algorithm. 

At last, it is noteworthy that other stochastic algorithms decreasing the 
variance of the random assignments are possible. For instance, Celeux and 
Diebolt (1990) have proposed and studied a simulated annealing EM algorithm, 
the so-called SAEM algorithm, which can be schematized by the very informal 
relation SAEM = (1 - TiEM + ?EM where 7 i:, the temperature. This formula- 
tion can be expected to lead an easier mathematical analysis of the theoretical 
bchaviour of the algorithm. Actually, Celeux and Diebolt (1990) have proved, 
under mild assumptions, that any sequence generated by the SAEM algorithm 
converges almost surely to a local maximizer of the log-likelihood function L. 
Such a result CUR be expected to hold for the CAEM algorithm but has not yet 
be proved. 



In the next section, WC report numerical experiments to assess the practical 
ability of CAEM to produce sensible maxima of the CML criterion. 

5. Numerical experiments 

We have performed numerical experiments to compare c three algorithms 
CEM, SEM, and CAEM in differents situations (simulate nd real data, small 
and large data,. . . ) for the variance criterion which has been seen (see Proposi- 
tion 1) as a CML criterion for a Gaussian mixture with equal proportions and a 
common covariancc matrix. 

These numerical experiments are merely illustrative. However, WC investi- 

gated the practical behaviour of the three algorithms in some typical situations: 
From well-separated clusters to no clustering structure, with small and large 
sample sizes, for clustering structure closely or weakly rc:ated to the variance 
criterion. More precisely, the numerical experiments concern both simulated 
data and real data. For each type of data set, we considered two sample sizes: 
150 and 1500 for simulated data and 300 and 3641 (the whole data set) for the 
real case. We simulated four bivariate Gaussian mixtures with three compo- 
nents. For the four mixtures, the means were cc, = (0, O), 1~~ = (3, 01 and 
p3 = ( - 2, - 2). For the three first mixtures, the proportions were equal and for 
the last one the proportions were p, = 11.6, pZ = 0.2 and y3 = 0.2. The covari- 
ante matrices of the components were all equal to I for the first mixture, all 
equal to 41 for the second one, and respectively I, 41 and 91 for the two last 
mixtures. These four simulated data sets will be respectively denoted MIX 1, 
MIX2, MIX3 and MIX4 in the following. 

Some comments are in order. The two first mixtures, MIX1 and MlX2. arc 
exactly related to the variance criterion model with well separated clusters in the 
first case. The third mixture MIX3 differs from this model because the compo- 
nents have different covariance matrices. Finally, the last mixture, MIX4, differs 
also from this model because the component proportions are unequal. 

We have preferred performing experiments on real data set with no clear 
structure since simulating data, with no clustering structure, involved some very 
particular structure (uniform distribution for instance). The data consist in 3641 
patients described by six titrations of serum proteins (Sandor and Lechevallier, 
1977). Since, for these numerical experiments, we are only concerned with an 
optimization problem, the interpretation of the clusters will be not discussed in 
this paper. This data set will be denoted ‘SERUM’ in the following. 

Before reporting the results, we detail the implementation of CEM, SEM and 
CAEM for these numerical experiments. Each algorithm has been run from 3) 
different random initial positions. CEM has been run until the partition ha 
stopped changing. SEM has been run ZOO iterations, tk CEM ended the 
process from the best solution provided during these iterations. Wt: have 
performed CAEM with different decreasing rule defined by T,,, + I = NT,,, with 

0.9 < a 5 1. All the CAM4 experiments, reported in this section, have been 
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performed with a = 0.97, since, from our experience, this value provides often a 
good solution with a reasonable number of iterations. Moreover, CAEM has 
been run until the partition has stopped changing. 

The results obtained are displayed in Table 1. For each data set and each 
algorithm, we summarize the 20 trials with the worst value, the best value, the 
mean value and the standard deviation of the CML criterion. We also display 
the number of times the best value occurs out of the 20 trials. 

The results in Table 1 suggest that CEM does the job for a clear clustering 
structure associated with the optimized CML criterion and for large samples. In 
such cases, there is no need for a stochastic algorithm. In all other situations, it 
appears that SEM and CAEM outperform CEM: the mean value of the 
criterion is better and the standard deviations arc dramatically smaller when 
using the stochastic algorithms. Moreover, for the unstructured data set 
‘SERUM’ the superiority of SEM and CAEM is more marked since CEM 
provides a ‘best CML value’ smaller than the ‘best CML value’ of both 
stochastic algorithms. 

On the other hand, the comparison of CAEM and SEM results shows that 
CAEM appears generally more stable and gives better results especially for 
small samples. In our opinion, this behaviour is mainly due to the fact that the 
influence of the random perturbations have to be controlled for small sample 
sizes. Thus, CAEM can be expected to be more reliable than SEM for very 
small data sets. For instance, we have compared both algorithms for a sample of 
size 30 arising from the mixture MIX3. Using SEM, four times of out twenty 
trials one of the three clusters vanished. But this event never occurs when using 
CAEM for twenty trials. On the contrary, for large data sample sizes and with 
no structured data, there is a need for considerable random perturbations and, 
in such cases, SEM can be expected to perform better than CAEM as it turns 
out from Table 1 for the large data set ‘SERUM’. 

It is worth carrying out a qualitative evaluation of the partitions derived from 
the numerical experiments. We distinguished the partitions which provided a 
good value for the CML criterion from the other ones and we displayed in Table 
2 the frequencies of this sensible optimum out of the 20 trials for all the 
experiments. 

Table 2 corroborates the results of Table 1 and highlights the weak initial 
position dependence of the solutions provided by SEM and, especially, CAEM. 
However, this weak initial position dependence is not SO marked for the 

Table 2 
Frequencies of the sensible optimum solution 

Sample size MIX1 MIX2 MIX3 MIX4 SERUM 

150 1500 1150 1500 1 SO 1500 1 so 1500 300 364 1 

CEM 20 20 9 6 10 19 16 18 1 0 
SEM 20 20 14 9 16 20 19 20 3 8 

CAEM 20 20 19 19 20 20 20 20 8 5 
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Table 3 
Comparison of a CEM solution and the improved solution obtained with SEM or CAEM 

Proport ions means criterion 

initial positions 0.68. 0.20, 0.12 (-0.84. -0.49. (2.51, 181) (3.38, - 2.15) - 735.55 
final posit ion 0.66, 0.22, 0.12 (-0.28,0.39, (3.76,0.01), ( - 2.55, -3.82) -691.71 

unstructured data set for which the CML function does not present a strong 
maximum. Note that for the large sample from ‘SERUM’, Table 2 highlights the 
superiority of SEM on CAEM. 

At last, we performed an other series of simulations to assess the ability of 
the stochastic algorithms SEM and CAEM to improve a poor sub-optimal 
solution provided by CEM. We do not report all these simulations as they 
exhibited similar behaviour. As an illustration, we just give an example from the 
data set MIX4 (sample of size 150). We initiated both algorithms with a 
sub-optimal partition obtained by CEM. Table 3 displays the initial solution and 
the final solution obtained with both algorithms. 

From Table 3, It turns, out that both partitions are quite different. Thus, 
CEM can often provide an irrelevant partition. This kind of misleading be- 
haviour occurs seldom when using SEM or CAEM. Moreover, they provide a 
way to detect such doubtful solutions. 

Remark. It is not possible to display all the mixture parameter estimates arising 
from these numerical experiments. In any case, it appears that the estimates 
which provide the best CML values are related with the true parameters. For 
instance, even for MIX4 (sample of size 1500), for which the variance criterion is 
thr lets adequate, we obtain 

b, = 0.11, & = 0.22, & = 0.67, 

and 

c1 = (--3.97, -2,75), fil = (3.16, 

6. Conclusion 

0.60), ,& = (-0.15, 0.20). 

We have considered clustering under the classification maximum likelihood 
approach. In this setting, we have defined and studied a clustering algorithm, 
the so-called Classification EM algorithm (CEM). Since most of the classical 
clustering criteria can be analysed as classification maximum likelihood criteria, 
the CEM algorithm turns out to be a quite general clustering algorithm. Taking 
advantage of its probabilistic background, we derived two stochastic versions of 
CEM in the purpose of proposing algorithms depending weakly of initial 
positions. The first one, the SEM algorithm, can be regarded as a stochastic 
version of the EM algorithm as well as CEM. The second one, the CAEM 



algorithm, has some similarities with simulated annealing. Numerical experi- 
ments, concerning the variance criterion for the sake of simplicity, show good 
performances of SEM and CAEM compared to CEM. However, both aigo- 
rithms need a large number of iterations to ensure the best results: According to 
the data and their initial position, they need a few or many iterations to 
converge. But we cannot anticipate this point and, thus, their computational 
costs remain high. Despite this drawback, both algorithms appear to be efficient 
to avoid sub-optimal solutions that deterministic algorithms, as the CEM algo- 
rithm, can encountered often. This characteristic of SEM and CAEM, already 
apparent using the variance criterion, can be expected to arise more strongly 
when using more sophisticated clustering criteria since the more complicated a 
criterion is, the more a solution provided by the CEM algorithm depends on its 
initial position. At least, the two stochastic versions of CEM are useful to assess 
the stability of a partition derived from CEM since when SEM or CAEM are 
initiated with a sub-optimal solution of CEM, they converge to a better optimum 
in most cases. Finally, from our experience, we recommend em 
rather than SEM for small sample sizes, and SEM rather than CAEM for large 
sample sizes, especially when there is no apparent clustering structure from the 
data. 
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