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Abstract: Sctting the optimization-based clustering methods under the classification maximum
likelihood approach, we define and study a general Classification EM algorithm. Then, we derive
from th's algorithm two stochastic algorithms, incorporating random perturbations, to reduce the
initial-position dependence of the classical optimization clustering algorithms. Nurnerical experi-
ments, reported for the variance criterion, show that both stochastic algorithms perform well
compared with the standard A-means algorithm which is a particular version of the Classification
EM algorithm.
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1. Introduction

Partitioning methods of cluster analysis are based on optimizing a criterion that
measures the compatibility of clustering parameters with data describing the
objects (see, for instance, Jain and Dubes, 1988, or Arthanary and Dodge, 1981.
Chapter 5). Generally, the optimal solution cannot be obtained in a closed form
so that some iterative clustering algorithm (k-means type algorithm, exchang.
algorithm (Spith, 1985),...) is employed to find the optimal partition. There is
no guarantee that an itcrative clustering algorithm will reach a global optimum.
The solution provided by a partitioning algorithm depends upon its initial
position and, in some situations, can happen tc give a poor local optimum value
of the criterion to be optimized. The present paper is concerned with this
optimization problem.
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We propose stochastic algorithms to optimize currently used partitioning
criteria. These algorithms are expected to produce sensible local optimum
solutions from any initial position. They have been conccived in the gencral
setting of the classification approach for mixture decomposition (Scott and
Symons, 1971; Symons, 1981). They will appear to be variations of a general
Classification EM algorithm (CEM) designed to optimize Classification Maxi-
mum Likelihood (CML) criteria in the mixture context. In this paper, we focus
on algorithms designed to find dircctly a partition, optimizing an adequacy
criterion between the clusters and the data. Thus, we are concerned with an
optimization problem on a discrete space (the set of partitions of n objects into
K clusters). We consider the partitioning problem in the mixturc context to take
advantage of the posterior probabilitics that the objects arise from one of the
mixture components for designing random assignments to “ae clusters.
Therefore, we do not discuss the statistical properties of the partitions
derived from e maximization of the CML criterion compared with the parti-
tions derived from thesi~ximization of the likelihood of the mixture. The rcader
is referred to the papers Mwﬁx Bryant and Williamson (1978, 1986).
Windham (1987), Celeux (1988), Gandiasizeam (1989), Celeux and Govaert
(1991) among others for a comparison of the behmw criterion and
maximum likelihood for cluster analysis. e

The paper is organized as follows. In Section 2, we define the CML criteriu.:
in a general setting and we show that the classical variance criterion can be
expressed (as many others) as a particular CML criterion arising from a
Gaussian mixture. In Section 3, we present and study the general Classification
EM algorithm (CEM) to optimize the CML criterion which parallels the EM
algorithm to optimize the likelihood of a mixture (Dempster, Laird and Rubin,
1977). In Section 4, we derive two stochastic versions of CEM. In Section 4.1, we
describe the SEM algorithm (Celeux and Dicbolt, 1985) which turns out to be a
stochastic version of CEM as well as EM. In Section 4.2, we present the CAEM
algorithm which can be regarded as a ‘simulated annealing’ version of the CEM
algorithm. Section 5 is devoted to numerical experiments to compare the
practical behaviour of CEM, SEM and CAEM algorithms. We summarize the
main points of this paper in a concluding section.

2. Classification maximum likelihood criteria

Clustering methods based on maximum likelihood consider the situation where

the data are R--valued vectors x,....x, assumed to be a sample from a
mixture of densiiies

K

flx)= X pif(x. a). (2.1)

k=1

where the p,’s are the mixing weights (0 <p, <l for all k=1,...,K and
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Y, pi = 1) and the f(x, a;) arc densitics from the same parametric family: for
instance f(x, a,) denotes the d-dimensional normal density with unknown
mecan u, and covariance matrix I and a, = (u,. ). In the mixture maximum
likclihood (m.1.) approach. the parameters p, and a, are chosen to maximize
the log-likelihood

n K
L""]Og{rli Y pflx,. )}, (2.2)
-0 k-1
using, generally, the EM algorithm (Dempster, Laird and Rubin, 1977). In this
approach, considered by many authors, see. for instance, the book of Tittering-
ton, Smith and Makov (1985), a partition P=(P,....,P;) of the data can
directly be deduced from the m.l. estimates of the mixture paramcters by
assigning cach x, to thc component which provides the greatest posterior
probability that x, arises from it. We do not further consider this approach in
this paper since we are mainly concerned with the optimization of standard
clustering criteria which cannot be expressed as mixture likelihoods.

In the classification maximum likelihood (CML) approach, the indicators z,.
identifying the mixture component origin for x;, (1 <i<n), arc treated as
unknown parameters. Two different CML criteria have been proposed accord-
ing to the sampling scheme. Under the separate sampling scheme, the sample
x,....,x, is formed by separately taking n, obscrvations from the kth compo-
nent where n, is fixed before sampling. In this situation, the CML criterion
takes the form (see, for instance, Scott and Symons, 1971)

K
C(P.a)=Y¥ ¥ log f(x, a). (2.3)

k=1 xe€b,

where P=(P,.....P;) is a partition of x.....x, associated to the indicator
vectors z,.....2,: P, ={x/z,=1} and a=(a,....ay). In this formulation,
the proportions p,’s do not appear explicitly and, thus, they are implicitly
assumed to be equal. Now, once the a,’s and the zs are estimated, the
proportions can be estimated by #P, /n (1 <k <K). Under the mixture sam-
pling, the sample x,,..., x, is taken at random from the mixture density (2.1). so
that the number of observations from the components has a multinomial
distribution with sample size n and probability parameters p,.....pg. In this
situation, the CML criterion takes the form (Symons, 1981)

K
Cy(P.p.a)= ), X log{p,f(x,. a,)} (2.4)

k=1x¢€pP,

which can be written

K
C.(P.p.a)=C,(P,a)+ ) nlog p,. (2.5)

k=1
where p=(p,,...,py) and where n = #P, (1 <k < K). Following Bryant
(1991), we can refer to this criterion as to the penalized CML since. from (2.5).
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it introduces a pcnalty term X, n, log p,. Morcover, thc CML criterion defined
by {2.3) can be lllnglll of as a pai rticular C1 CML criterion for a mixture of
densities with equal proportions since, in this case, the penalty term occurring in
(2.5) is useless.

1t appears that the main interest of the CML presentation of cluster analysis
is that most of the standard clustering criteria can be viewed as particular CML
criteria {(see, for instance, Scott and Symons, 1971; Celeux, 1988; and, for
discrete data, Celeux and Govaert, 1991). Thus, the classification approach of
mixtures is a fruitful linc which reveals some of the statistical aspects of many
classical clustermg criteria. But the toplc of the present paper is not to analyze
the features of clustering criteria. Here, we are concerned with (‘);‘uii‘l‘lizatiﬁl‘l
algorithms in clustering, and, for simplicity, we will focus on the most popular
clustering criterion, the so-called variance criterion, to be minimized, which

takes the form

K
wPy=Y¥ Y lix,—-gllI° (2.6)

k=1 x,EP‘

where g, is the center of the cluster P, (1 <k <K).

So, it is noteworthy to stress that all the algorithms discussed hereunder are
designed to optimize a CML criterion and can be particularized for the opti-
mization of any classical clustering criterion. Thus, the following proposition,
which displays the CML criterion associated to the variance criterion, can be
regarded as a particular version of a more general proposition which expresses
the relations between CML criteria and classical clustering criteria.

Proposition 1. Maximizing the C, criterion for a Gaussian mixture with equal
mixing weights and a common covariance matrix of the form oI (o> unknown) is
equivalent to minimizing the variance criterion W.

Proof. In this situation, we have a, =(u,, o) and p, =1/K (1 <k <K). For a
fixed partition P=(P,,..., Py), it can easily be proved that the m.l. estimate of
#; 1s the center of cluster P,. In these conditions, C, can be written

C,(P.p.a

nd log(o*) + A, (2.7)

where A denotes a constant and where W(P) has been defined in (2.6).
Proposition 1 follows immediately from (2.7) and it is direct to see that the
estimate of ¢, optimizing C,(P, p, a) is W(P)/nd.

Proposition 1 shows that the optimization of the variance criterion can be
considered under the CML approach. Thus, it will be seen in Section 4 that this
proposition allows us to propose some stochastic algorithms to optimize the
variance criterion. These algorithms will appear in a natural way as stochastic
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versions of a general clustering algorithm, that we present now. devoted to
optimizing CML criteria.

3. The Classification EM algorithm

The EM algorithm is a general algorithm to compute the m.l. estimates of p,.
a, (1 <k <K) under the mixture approach. The Classification EM (CEM)
algorithm is a general algorithm to compute the estimates p,, a, and to find the
clusters P, (1 <k <K) under the classification approach. This algorithm, de-
scribed hereunder, can be regarded as a classification version of the EM
algorithm: it incorporates a classification step between the E-step and the
M-step of the EM algorithm using a maximum a posteriori (MAP) principle.

Starting from an initial partition P", the mth iteration of CEM (m > () is
defined as follows:

E-step. Compute for i=1,...,n and k = 1..... K the current posterior proba-
bilities 1;"(x;) that x; belongs to P,

m x;, am
tin(xi): K f(m m ’ (31)
Z/\' lpk f(xl’ a

for the current parameter estimates p"” and a™.

C-step. Assign each x; to the cluster which provides the maximum posterior
probability ¢;"(x;), 1 <k <K, (if the maximum posterior probability is not
unique, we choose the cluster with the smallest index). Let P™ denote the
resulting partition.

M-step. For k=1,...,K compute the maximum likelihood estimates
(p*', a"*") using the sub-samples P{". It leads to

m

p;:'*'-—-—}—;—- forall k=1....,K. (3.2)

Obviously, the exact formulae for the a}"*'’s depend on the involved parametric
family of densities. For instance. for a Gaussian mixture with means g,
(1 <k <K) and a common covariance matrix oI, we get

“"l’:+l P forall k=1,....K, (33)
# xep’"
and
L K
m+ m+1 34
@ L b (34

Recall that d is the dimension of the space RY where the sample takes values.
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Some comments are in order:

(i) From the practical point of view, it turns out that CEM is not a new
algorithm. For instance, the variance critcrion is often optimized by pervforming
a k-means type algorithm. Starting from a position P, an iteration m (m > 1)
of the k-means algorithm can be summarized as follows:

(1) Representation step. Compute the centers g;"*! of the clusters P (1 <k <
K).
(2) Assignment step. Define P! =(PP+!, ..., PP"""), where

Prtt={x/llx,—gf 1P < e, —glt* 1%, forall k' #k).

From Proposition 1, it is straightforward to sce that thc k-means algorithm is
exactly the CEM algorithm for a Gaussian mixture with equal proportions and a
common covariance matrix of the form o>/ (o> unknown) since the estimation
of the scale parameter o does not affect the assignments of the x;’s to the
clusters P,’s.

(i) It turns out that the sample points arc assigned to the clusters on the
basis of the posterior probabilities belonging to these clusters. These posterior
probabilities are directly derived from the mixture model and have a primary
part in the definition of the stochastic versions of the CEM algorithm.

We turn now to the theoretical properties of the CEM algorithm and

sequences generated. These properties are summarized in the two following
propositions.

Proposition 2. Any sequence (P™, p™, a™) of the CEM algorithm increases the
CML criterion C, and the sequence C(P™, p™, a™) conterges to a stationary
value. Moreover, if the m.l. estimates of the parameters are well-defined, the
sequence (P™, p™, a™) converges to a stationary position.

Proof. We first show that the criterion C, is increasing. Since (p"*!, a'*") is
maximizing X, . p» log{ p, f(x;, a;)}, we have from (2.4)

CZ(P'", pm+l’ am+l) ZCZ(P"', pm’ am),

and since x; € P"*' is equivalent to t;"*'(x;) > 17" (x,) for all k' # k which
implies

m+1 m+1 m+1 m+1
Dy (x;, a"" ") = p; f(x:, ai’™ '),
we have
C:(Pm+|, pm+l, am+l) ZCZ(P'", pm+l, am+l)_

Since there is a finite number of partitions of the sample into K clusters, the

increasing sequence C,(P™, p™, a™) takes a finite number of values, and thus,
converges to a stationary value. Hence

CZ( P'", pm’ anl) — C:(Pm, pm+ i’ am+ l) — CZ( Pm+ I’ pm + l, am+ l)
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for m large enough; from the first equality and from the assumption that the
m.l. cstimatc p” and " arc well-defined, we deduce that p™ =p™*!' and
a” =a™*'. From the second equality and the very definition of the C-step, it
follows that P" = Pp™ !,

Remark. The assumption that the m.l. estimator of the parameter a of the
density f(-, a) is well-defined appears to be mild, since it is true for a large class
of densitics (for instance, densitics from an exponential family).

From Proposition 2, it is only possibly to statc that if the sequence
(P™, p™, a™) converges, it converges to a critical point of the CML criterion. In
fact, onc hopes that the sequence converges to a point that produces the global
optimum (or at least a sensible optimum) of the CML criterion. Proposition 3
gives conditions that, if the itcrates get close enough to a point that produces a
local optimum, the CEM sequence will converge to it. Before stating this
proposition, we need some additional notation and definitions. Let M be the set
of matrices U =[u,,] in R"* with nonncgativc entries which sum to one down
each column, and have nonzero sums across each row. Windham (1987) called U
a standard classification matrix. Now, let consider the criterion to be maximized

K n
Cy(U, p.a)=Y Y u, log{p, f(x,, a,)}, (3.5)
k=1i=1
where U € M.

Proposition 3. Assume that C(U, p, a) has a local maximum at (U*, p'. a*)
and that the Hessian of C AU, p, a) is negative at (U™, p*, a*). Then, there is a
neighbourhood V of (U*, p*, a*) so that, for any (U’, p’. a") in V, the
resulting sequence (P, p™. a™) of the CEM algorithm converges to (U™, p*, a*)
at a linear rate.

Proof. For fixed p and a, wc have for any Ue M

K n
CiU.p.a)< ¥ Yuy  max [log{p,flx,. ap)}].
folic “1.....
ie.

Ci(U,p,a)< Yo max [log{p, f(x;. a,)}].

"= l -----
Thus, for fixed p and a, the U matrix which maximizes C3(U, p, a) represents a
partition of (x,,...,x,)

u,=4{ k=l
0 otherwise.

It implies that

max C5(U, p, a) = maxC,(P, p, a). (3.0)
UeM Pep,
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where P, is the set of partitions into K clusters of (x,..., x,). Hence, the CEM
algorithm can be regarded as an alternating optimization algorithm to maximize
the criterion C5(U, p, a) that we can describe as follows (we consider the mth
iteration)

untlt= argmlzlGCé(U, p",am), (3.7a)
(P"+1, am+l)=argmaXC£(Um+l’ p. a). (3.7b)
(p.a)

The stage described by (3.7.a) is achieved with the E-step and C-step of the
CEM algorithm and the stage described by (3.7b) is achieved using the M-step
of CEM.

From (3.7a) and (3.7b), CEM turns out to be a grouped coordinate ascent
method to optimize C5(U, p, a). Thus, we are in position to apply the Theorem
2.2 of Bezdek et al. (1987, pp. 473), which states the desired result for a
sequence (U™, p™, a™) generated by the alternating optimization algorithm
defined by Egs. (3.7a) and (3.7b). And, Proposition 3 follows from the equiva-
lence (3.6).

From the practical point of view, the solution provided by the CEM algorithm
does depend upon its initial position. This is dramatically true if the clusters are
not well separated. Usually, to overcome this limitation, the CEM algorithms is
repeated several times from different initial positions and the clustering which
provides the greatest value of the CML criterion is selected. Moreover, if most
of the CEM runs lead to the same clustering, we can have some confidence that
the global optimum has been achieved. In the next section, we take advantage of
the probabilistic background of CEM to introduce stochastic versions of this
clustering algorithm which are mainly aimed at giving an answer to the initial-
position dependence of CEM.

4. Two stochastic vcrsions of CEM

4.1. The SEM algorithm

The SEM algorithm has been proposed by Celeux and Diebolt (1985) to
estimate the parameters of a mixture as an aiternative to the EM algorithm. It
has been designed to give an answer to the fundamental limitations of EM
(strong dependence on initial position, convergence to saddle-points of the
likelihood function, slow convergence,...) which can occur when the mixture
components are not well separated. The SEM algorithm incorporates a stochas-
tic step (S-step) between the E- and M-steps of the EM algorithm. This S-step is
directed by the following Random Imputation Principle (RIP): Generate a
completed sample (x,, z{"),...,(x,, z!") by drawing it at random from the
posterior distribution (¢;"(x,), k=1,...,K) for all i (1 <i<n) given the ob-
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served sample (x|, ..., x,) and for a current fit (p”, a™) of the mixture parame-
ters. Hereunder, we describe the three steps of the SEM iteration ( p", a")—-
(p™*', a™*") starting from an initial position ( p". a").

E-step. Compute for i=1,....,n and k=1,...,K the posterior probabilities
that x, belongs to P,

m

pi'f(x;, a;
K m my
Lo PS(x;, @

S-step. For i=1,...,N assign at random cach x; to one of the clusters
P,,..., Py with probabilities (1;"(x;), k=1,...,K). Denote P™ the resulting
partition.

1 (x;) = (4.1)

M-step. For k =1,...,K compute the m.l. estimates (p;"*', ai""') using the
sub-samples P;".

For the Gaussian mixture with a common covariance matrix o>/ to which we
pay special attention, it leads to the formulae (3.2), (3.3) and (3.4) of the M-step
of the CEM algorithm. It is clear that SEM can be thought of as a stochastic
version of CEM as well as EM: The S-step appears to be simply a stochastic
version of the C-step. Thus, from Proposition 1, it is straightforward to define a
version of SEM optimizing the variance criterion which can be viewed as a
stochastic k-means algorithm.

SEM has an intriguing intermediate position betiween EM and CEM. It
appears to be a natural stochastic version of both algorithms though they are
designed to optimize different criteria: The log-likelihood L defined in (2.2) for
EM and the CML criterion C, defined in (2.4) for CEM. This position can be
explained from the following relation. Direct calculations (sce Hathaway, 1986)
show that

n K
L(p’ a) =C.‘;(Ts ps a) - Z Z tk(xi) log tk(xi)* (4'2)
i=1 k=1
where T=(t,(x,), k=1,...,K; i=1,...,n) denotes the posterior probabilities
matrix associated to ( p, a) via equation (4.1), L(p, a) is the log-likelihood given
in (2.2) and where the criterion defined in (3.5)
K n
CiT, p,a)= Y Y t,(x;) log{p,f(x,, a,)}, (4.3)
k=1i=1
is exactly the CML criterion C, defined in (2.4) if T defines a partition of
(x),...,x,) (i.e. for each x,, there exists k (1 <k < K) such that 7,(x,) = 1). The
relation (4.2) leads to the following comments. First, remark that if T defines a
partition of (x,,...,x,), we have t,(x;) log 1,(x;) =0 for all i (1 <i<n) and k
(1 <k <K) {by convention 0 log 0 =0 since lim ¢ log 1 =0 as t = 0) and, thus,
we have

CAT, p,a)=Cy(T, p,a)=L(p, a). (4.4)
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Hence, any SEM iteration produces the same value for the CML criterion C,
and the likelihood L. Moreover, maximizing the right-hand side of (4.2) under
the constraint that T defines a partition of (x,,..., x,)) is equivalent to maximiz-
ing CT, p, a). On the other hand, if (p*, a*) denotes the vector maximizing
L(p, a), then T' defined by

1 ifk=argk'=nllax K’k’(xi) foralli=1,...,n

Lx)={  k=l.. _
¢ 0 otherwise and k=1,.... K,

(4.5)

maximizes CXT, p*, a*).

On a contrary, we can stress the differences between the partitions designed
by CEM and by SEM. The convex hulls of the clusters generated by CEM are
disjoints, whereas the clusters generated by SEM are generally intricated. From
this point of view, it turns out that the sequence of the mixture estimates via
SEM is closer to the EM estimates than the CEM estimates.

A detailed account of convergence aspects of the sequence (p”, a™) gener-
ated by SEM can be found in Celeux and Diebolt (1985) and principally in
Celeux and Diebolt (1986). Here, we summarize the most significant results.
First, it is important to point out that owing to the S-step, the sequence
(p™, a™) does not converge pointwise: (p™, @) is a random vector, and so, P"™
is a random partition. The process (p™, a™) gencrated by the SEM iterations
m =1, 2,... on the basis of a given sample x,..., x, of size n is an homoge-
neous Markov chain for which ergodicity holds. Thus (p™, a™) converges in
distribution, as the iteration index m — =, to the unique stationary distribution
¥,. Since the sample x,,...,x, is fixed, (p", a™) cannot be expected to
converge in a stronger way (e.g. in probability or with probability 1). A natural
pointwise estimator of ( p, a) derived from ¥, is the mean (p, a), of ¥,. From a
theorem of Redner and Walker (1984, Theorem £.2, p. 23) on the asymptotic
behaviour of the EM algorithm, it has been proved (Celeux and Diebolt, 1986)
that if X denotes a random vector drawn from the stationary distribution ¥,
and if the EM algorithm has only one stable fixed point which is necessarily the
unique consistent solution (p*, a*), of the likelihood equations, then Vn (X —
(p*, a*),) converges in distribution, as the sample size n — %, to a Gaussian
random variable with mean 0 and regular covariance matrix I" which can be
expressed in terms of the true mixture parameters.

In practical situations in order to derive, in a sample way, from the SEM
algorithm a reliable pointwise estimate of the mixture parameters and the
associated partition, we used an hybrid algorithm. We ran the SEM algorithm a
few dozen iterations, so that the sequence (p™, a™) has reached stationarity,
and then we ran the CEM algorithm from the position which achieved the
greatest value of the CML criterion among these SEM iterations.

Numerical experiments (Celeux and Diebolt, 1985) have shown that, consid-
ered as a stochastic version of EM, SEM performs well and overcomes most of
the limitations of the EM algorithm. In the classification approach of the
mixture prebieiin, SEM is expected to perform well in the samc maiiicr and
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cspecially to avoid the sub-optimal solutions that thc CEM algorithm happens to
provide. In Section 5, we report numerical experiments performed to assess the

practical ability of thc k-mcans version of SEM to overcome the limitations of
CEM.

4.2. Simulated annealing version of CEM

The algorithm, that we propose now, is based upon the SEM algorithm but, in
order to obtain direct pointwise cstimates of the mixture parameters, the
variances of the random assignments arc decreasing to zero as the number of
iterations increases to infinity. This is achicved by using a sequence (7,,, m = 0)
of temperatures decreasing to zero as m tends to infinity from 7,=1, as it is
performed in simulated annealing (cf. Van Laarhoven and Aarts, 1987). For this
reason, we called this algorithm the CAEM algorithm (Classification Annealing
EM).

Starting from an initial partition, the mth iteration of CAEM (m > () is the
following:

AE-Step. Compute for i=1,....,n and k = 1,..., K the following scores s;"(x;)
associated to the current posterior probabilities #;'(x;) that x; belongs to P;”

(pif (x;. @)} ™
X P )™

C-Step. For i=1,...,n assign at random each x; to one of thc clusters
P,,..., P, with probabilities (s"(x;), k =1,...,K). Denote P"™ the resulting
partition.

st(x,) = (4.6)

m+ 1

M-Step. For k=1,..., K, compute the m.l. estimates (p;"*', a}’*') using the
sub-sample P;”. It is exactly the same step than the M-Step of the CEM and
SEM algorithms.

For 7= 1, the CAEM iteration is exactly the SEM iteration, whereas as 7
tends to be 0, it is exactly the CEM iteration. Thus, when the sequence (7,,)
decreases from 1 to 0 as the iteration index m grows, we go from pure SEM at
the beginning towards pure CEM at the end. As mentioned above, CAEM
exhibits some striking similarities with simulated annealing. Simuiated annealing
is a general approach for solving approximately large combinatorial optimization
problems when no additional information about the structure of the function to
be optimized is used. Experiments of simulated annealing in clustering have
been performed by Klein and Dubes (1989). These authors used a classical
simulated annealing scheme that we sketch hereafter.

Starting from an initial partition P and having chosen an initial temperature
7, a clustering criterion, say W(P), is minimized using simulated annealing in
the following way (we described the mth iteration of the algorithm): Perturb the
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partition P™ ! to partition P". If AW = W(P")— W(P"" ') <0, accept parti-
tion P™, clsc accept partition P” with probability exp(—4W/7,,), where 7, is
the current temperature of the system. Define 7,,,,=f(7,) where f is a
monotone decreasing function.

The simulated anncaling algorithm stops when the system is frozen. The
simulated anncaling method shares with CAEM the basic property of not
terminating when rcaching the first local optimum they encounter. In both
cases, this is possible since the transitions P™ — P™*! corresponding to a
decrease (resp. increase) of the function to be maximized (resp. minimized) can
be accepted, in some limited fashion, with non-zcro probability. Morcover, in
both cases the probability of accepting such transitions decreases to zero as the
algorithm proceeds.

By contrast, CAEM is a tailored algorithm designed to find a stable fixed
point of the CML criterion C,, by taking advantage of the basic properties of
the CEM algorithm (especially, that cach CEM itcration increasecs the CML
criterion). Finally, CAEM could be ¢xpected to be more cfficient than simulated
annealing since it is based on the dynamical system CEM which increases the
CML criterion to be maximized at cach iteration. From this point of view, it is
important to notice that CAEM does not present onc of the drawback of
simulated annealing (outlined by Klein and Dubes, 1989) which concerns the
time spent on calculating the cost for transitions that arc cventually rejected,
particularly with small values of the temperature. As a matter of fact, there is
only one transition considered at each CAEM iteration.

Now, for both algorithms, the crucial part is the cooling schedule and
especially the rule for decreasing the temperature. For simplicity, when per-
forming CAEM, we have chosen a decreasing rule defined by 7,,, , =ar,, with
0.9 <a <1 since it is well known that to give good performance, simulated
ainealing type algorithms need a slow convergence rate of the sequence (7,,) to
0 (sec Van Laarhovea and Aarts, 1987).

On the other hand, we have to notice that the cooling schedule is also
depending of the starting temperature 7,. This parameter has to be chosen
carcfully for simulated anncaling. For instance, if 7, is too low the anncaling
will terminate in a sub-optimal solution. For CAEM, it is natural to choose
7, = | from the very definition of this algorithm.

At last, it is notcworthy that other stochastic algorithms decreasing the
variance of the random assignments are possible. For instance, Celeux and
Diebolt (1990) have proposed and studied a simulated annealing EM algorithm,
the so-called SAEM algorithm, which can be schematized by the very informal
relation SAEM = (1 — 7)EM + EM where 7 it the temperature. This formula-
tion can be expected to lead an easier mathematical analysis of the theoretical
behaviour of the algorithm. Actually, Celeux and Diebolt (1990) have proved,
under mild assumptions, that any sequence generated by the SAEM algorithm
converges almost surely to a local maximizer of the log-likelihood function L.

Such a result can be expected to hold for the CAEM algorithm but has not yet
be proved.



G. Celeux, G. Govaert / A Classification EM algorithm 327

In the next scction, we report numerical experiments to assess the practical
ability of CAEM to produce sensible maxima of the CML criterion.

S. Numerical experiments

We have performed numerical experiments to compare the three algorithms
CEM, SEM, and CAEM in diffcrents situations (simulated and real data, small
and large data,...) for the variance criterion which has been seen (see Proposi-
tion 1) as a CML criterion for a Gaussian mixture with equal proportions and a
common covariance matrix.

These numerical experiments are merely illustrative. However, we investi-
gated the practical behaviour of the three algorithms in some typical situations:
From well-separated clusters to no clustering structure, with small and large
sample sizes, for clustering structure closely or weakly rcilated to the variance
criterion. More precisely, the numerical cxperiments concern both simulated
data and real data. For cach type of data sct, we considered two sample sizes:
150 and 1500 for simulated data and 300 and 3641 (the whole data set) for the
real case. We simulated four bivariate Gaussian mixtures with three compo-
nents. For the four mixtures, the means werc p, =(0,0), u,=(3,0) and
s = (=2, —2). For the threc first mixtures, the proportions were equal and for
the last one the proportions were p, = 0.6, p,=0.2 and p;=0.2. The covari-
ance matrices of the components were all equal to I for the first mixture, all
equal to 41 for the second one, and respectively /7, 41 and 91 for the two last
mixtures. These four simulated data sets will be respectively denoted MIXI,
MIX2, MIX3 and MIX4 in the following.

Some comments are in order. The two first mixtures, MIX1 and MIX2. are
exactly related to the variance criterion model with well separated clusters in the
first case. The third mixture MIX3 differs from this model because the compo-
nents have different covariance matrices. Finally, the last mixture, MIX4, differs
also from this model because the component proportions are uncqual.

We have preferred performing experiments on rcal data set with no clear
structure since simulating data, with no clustering structure, involved some very
particular structure (uniform distribution for instance). The data consist in 3641
patients described by six titrations of serum proteins (Sandor and Lechevallier,
1977). Since, for these numerical experiments, we are only concerned with an
optimization problem, the interpretation of the clusters will be not discussed in
this paper. This data set will be denoted ‘SERUM’ in the following.

Before reporting the results, we detail the implementation of CEM, SEM and
CAEM for these numerical experiments. Each algorithm has been run from 20
different random initial positions. CEM has been run until the partition has
stopped changing. SEM has been run 200 iterations, the CEM cnded the
process from the best solution provided during these iterations. We have
performed CAEM with different decreasing rule defined by 7,,., =a7,, with
09 <a < 1. All the CAEM experiments, reported in this scction, have been
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performed with a = (.97, since, from our cxpcricncc, this value provides often a

onnd calutinn with a raacnnahla mha ~F |V, PR ATTAA
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been run until the partition has stopped changing.

The results obtained are displayed in Table 1. For each data set and each
algorithm, we summarize the 20 trials with the worst value, the best value, the
mcan value and the standard deviation of the CML criterion. We also display

nuitmhar AF tienmng tha hagt uanl. Ao Pow-giy PN

the number of times the best value occurs out of the 20 trials.

The results in Table 1 suggest that CEM does the job for a clear clustering
structure associated with the optimized CML criterion and for large samples. In
such cases, there is no need for a stochastic algomhm In all other situations, it
appears that SEM and CAEM outperform CEM: the mean value of the
criterion is better and the standard deviations are dramatically smaller when
using the stochastic algorithms. Moreover, for the unstructured data set
‘SERUM’ the superiority of SEM and CAEM is more marked since CEM
provides a ‘besi CML value’ smalier than the ‘best CML value’ of both

stochastic algorithms.

On the other hand, the comparison of CAEM and SEM results shows that
CAEM appears generally more stable and gives better results especially for
small samples. In our opinion, this behaviour is mainly due to the fact that the
influence of the random perturbations have to be controlled for small sample
sizes. Thus, CAEM can be expected to be more reliable than SEM for very
small data sets. For instance, we have compared both algorithms for a sample of
size 30 arising from the mixture MIX3. Using SEM, four times of out twenty
trials one of the three clusters vanished. But this event never occurs when using
CAEM for twenty trials. On the contrary, for large data sample sizes and with
no structured data, there is a need for considerable random perturbations and,
in such cases, SEM can be expected to perform better than CAEM as it turns
out from Table 1 for the large data set ‘SERUM".

It is worth carrying out a qualitative evaluation of the partitions derived from
the numerical experiments. We distinguished the partitions which provided a
good value for the CML criterion from the other ones and we displayed in Table
2 the frequencies of this sensible optimum out of the 20 trials for all the
experiments.

Table 2 corroborates the results of Table 1 and highlights the weak initial
position dependence of the solutions provided by SEM and, especially, CAEM.

However, this weak initial position dependence is not so marked for the

¢’

Table 2

Frequencics of the scnsible optimum solution

Sample sizec  MIXI MIX2 MIX3 MIX4 SERUM
150 1500 1150 1500 150 1500 150) 1500 300 3641

CEM 20 20 9 6 10 19 16 18 1 0

SEM 20 20 14 9 16 20 19 20 3 8

CAEM 20 20 19 19 20 20 20 20 8 5
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Table 3
Comparison of a CEM solution and the improved solution obtained with SEM or CAEM

Proportions means criterion

initial positions  0.68, 0.20, 0.12 (-0.84, —0.45), (251, 181) (3.38, —2.15) —735.55
final position  0.66, 022, 0.12 (-0.28,0.39), (3.76,0.01), (-255, —3.82) -691.71

unstructured data set for which the CML function does not present a strong
maximum. Note that for the large sample from ‘SERUM’, Table 2 highlights the
superiority of SEM on CAEM.

At last, we performed an other series of simulations to assess the ability of
the stochastic algorithms SEM and CAEM to improve a poor sub-optimal
solution provided by CEM. We do not report all these simulations as they
exhibited similar behaviour. As an illustration, we just give an example from the
data set MIX4 (sample of size 150). We initiated both algorithms with a
sub-optimal partition obtained by CEM. Table 3 displays the initial solution and
the final solution obtained with both algorithms.

From Table 3, it turns, out that both partitions are quite different. Thus,
CEM can often provide an irrelevant partition. This kind of misleading be-
haviour occurs seldom when using SEM or CAEM. Moreover, they provide a
way to detect such doubtful solutions.

Remark. It is not possible to display all the mixture parameter estimates arising
from these numerical experiments. In any case, it appears that the estimates
which provide the best CML values are related with the true parameters. For
instance, even for MIX4 (sample of size 1500), for which the variance criterion is
the less adequate, we obtain

p,=0.11, p,=0.22, p,=0.67,
and

A, =(-3.97, -2,75), A,=(3.16, —0.60), f,=(-0.15,0.20).

6. Conclusion

We have considered clustering under the classification maximum likelihood
approach. In this setting, we have defined and studied a clustering algorithm,
the so-called Classification EM algorithm (CEM). Since most of the classical
clustering criteria can be analysed as classification maximum likelihood criteria,
the CEM algorithm turns out to be a quite general clustering algorithm. Taking
advantage of its probabilistic background, we derived two stochastic versions of
CEM in the purpose of proposing algorithms depending weakly of initial
positions. The first one, the SEM algorithm, can be regarded as a stochastic
version of the EM algorithm as well as CEM. The second one, the CAEM
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algorithm, has some similarities with simulated annealing Numerical experi-

ments, concerning the variance criterion for the sake of simplicity, show good

performances of SEM and CAEM compared to CEM. However, both aigo-
rithms need a large number of iterations to ensure the best results: According to
the data and their initial position, they need a few or many iterations to
converge. But we cannot anticipate this point and, thus, their computational
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to avoid sub-optimal solutions that deterministic algorlthms as the CEM algo-
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itnim, Can cncounterca orten. This characteristic of SEM and L,/-\I:.NI, dlrt.d(.ly
pparent using the variance criterion, can be expected to arise more strongly
WhClI uaulg morec bUplllbllLdlCU LlUblC[lllg LrllLl'ld sm(.t: ll'le more LUmpllCd[eG d
criterion is, the more a solution provided by the CEM algorithm depends on its
initial position. At least, the two stochastic versions of CEM are useful tc assess
the stability of a partition derived from CEM since when SEM or CAEM are

el vl W i

initiated with a bUD-Olemal solution of oem, mey converge to a better opumum

in most cases. Finally, from our experience, we recommend empioying CAEM
rather than SEM for small sample sizes, and SEM rather than CAEM for large
sample sizes, especially when there is no apparent clustering structure from the

data.

-
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