{208} revision 6 modified: 09-13-2019 18:30 gmt

PMID-22388818 Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills.

  • Trained a mouse to control an auditory cursor, as in Kipke's task {99}. Did not cite that paper, claimed it was 'novel'. oops.
  • Summed neuronal firing rate of groups of 2 or 4 M1 neurons.
  • Auditory feedback was essential for the operant learning.
    • One group increased the frequency with increased firing rate; the other decreased tone with increasing FR.
  • Specific deletion of striatal NMDA receptors impairs the ability to learn neuroprosthetic skills.
    • Hence, they argue, cortico-striatal plastciity is required to learn abstract skills, such as this tone to firing rate target acquisition task.
  • Controlled by recording EMG of the vibrissae + injection of lidocane into the whisker pad.
  • One reward was sucrose solution; the other was a food pellet. When the rat was satiated on one modality, they showed increased preference for the opposite reward during BMI control -- thereby demonstrating intentionality. Clever!.
  • Noticed pronounced oscillatory spike coupling, the coherence of which was increased in low-frequency bands in late learning relative to early learning (figure 3).
  • Genetic manipulations: knockin line that expresses Cre recombinase in both striatonigral and striatopallidal medium spiny neurons, crossed with mice carrying a floxed allele of the NMDAR1 gene.
    • These animals are relatively normal, and can learn to perform rapid sequential movements, but are unable to learn precise motor sequences.
    • Acute pharmacological blockade of NMDAR did not affect performance of the neuroprosthetic skill.
    • Hence the deficits in the transgenic mice are due to an inability to perform the skill.