[0] Jackson A, Mavoori J, Fetz EE, Correlations between the same motor cortex cells and arm muscles during a trained task, free behavior, and natural sleep in the macaque monkey.J Neurophysiol 97:1, 360-74 (2007 Jan)


{331} revision 4 modified: 09-13-2019 02:21 gmt

PMID-17021028[0] Correlations Between the Same Motor Cortex Cells and Arm Muscles During a Trained Task, Free Behavior, and Natural Sleep in the Macaque Monkey

  • used their implanted "neurochip" recorder that recorded both EMG and neural activity. The neurochip buffers data and transmits via IR offline. It doesn't have all that much flash onboard - 16Mb.
    • used teflon-insulated 50um tungsten wires.
  • confirmed that there is a strong causal relationship, constant over the course of weeks, between motor cortex units and EMG activity.
    • some causal relationships between neural firing and EMG varied dependent on the task. Additive / multiplicative encoding?
  • this relationship was different at night, during REM sleep, though (?)
  • point out, as Todorov did, that Stereotyped motion imposes correlation between movement parameters, which could lead to spurrious relationships being mistaken for neural coding.
    • Experiments with naturalistic movement are essential for understanding innate, untrained neural control.
  • references {597} Suner et al 2005 as a previous study of long term cortical recordings. (utah probe)
  • during sleep, M1 cells exhibited a cyclical patter on quiescence followed by periods of elevated activity;
    • the cycle lasted 40-60 minutes;
    • EMG activity was seen at entrance and exit to the elevated activity period.
    • during periods of highest cortical activity, muscle activity was completely suppressed.
    • peak firing rates were above 100hz! (mean: 12-16hz).

____References____