m8ta
use https for features.
text: sort by
tags: modified
type: chronology
{1485}
hide / / print
ref: -2015 tags: PaRAC1 photoactivatable Rac1 synapse memory optogenetics 2p imaging mouse motor skill learning date: 10-30-2019 20:35 gmt revision:1 [0] [head]

PMID-26352471 Labelling and optical erasure of synaptic memory traces in the motor cortex

  • Idea: use Rac1, which has been shown to induce spine shrinkage, coupled to a light-activated domain to allow for optogenetic manipulation of active synapses.
  • PaRac1 was coupled to a deletion mutant of PSD95, PSD delta 1.2, which concentrates at the postsynaptic site, but cannot bind to postsynaptic proteins, thus minimizing the undesirable effects of PSD-95 overexpression.
    • PSD-95 is rapidly degraded by proteosomes
    • This gives spatial selectivity.
  • They then exploited the dendritic targeting element (DTE) of Arc mRNA which is selectively targeted and translated in activiated dendritic segments in response to synaptic activation in an an NMDA receptor dependent manner.
    • Thereby giving temporal selectivity.
  • Construct is then PSD-PaRac1-DTE; this was tested on hippocampal slice cultures.
  • Improved sparsity and labelling further by driving it with the Arc promoter.
  • Motor learning is impaired in Arc KO mice; hence inferred that the induction of AS-PaRac1 by the Arc promoter would enhance labeling during learning-induced potentiation.
  • Delivered construct via in-utero electroporation.
  • Observed rotarod-induced learning; the PaRac signal decayed after two days, but the spine volume persisted in spines that showed Arc / DTE hence PA labeled activity.
  • Now, since they had a good label, performed rotarod training followed by (at variable delay) light pulses to activate Rac, thereby suppressing recently-active synapses.
    • Observed both a depression of behavioral performance.
    • Controlled with a second task; could selectively impair performance on one of the tasks based on ordering/timing of light activation.
  • The localized probe also allowed them to image the synapse populations active for each task, which were largely non-overlapping.

{1478}
hide / / print
ref: -2013 tags: 2p two photon STED super resolution microscope date: 09-18-2019 02:22 gmt revision:0 [head]

PMID-23442956 Two-Photon Excitation STED Microscopy in Two Colors in Acute Brain Slices

  • Plenty of details on how they set up the microscope.

PMID-29932052 Chronic 2P-STED imaging reveals high turnover of spines in the hippocampus in vivo

{1417}
hide / / print
ref: -0 tags: synaptic plasticity 2-photon imaging inhibition excitation spines dendrites synapses 2p date: 05-31-2019 23:02 gmt revision:2 [1] [0] [head]

PMID-22542188 Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex.

  • Cre-recombinase-dependent labeling of postsynapitc scaffolding via Gephryn-Teal fluorophore fusion.
  • Also added Cre-eYFP to lavel the neurons
  • Electroporated in utero e16 mice.
    • Low concentration of Cre, high concentrations of Gephryn-Teal and Cre-eYFP constructs to attain sparse labeling.
  • Located the same dendrite imaged in-vivo in fixed tissue - !! - using serial-section electron microscopy.
  • 2230 dendritic spines and 1211 inhibitory synapses from 83 dendritic segments in 14 cells of 6 animals.
  • Some spines had inhibitory synapses on them -- 0.7 / 10um, vs 4.4 / 10um dendrite for excitatory spines. ~ 1.7 inhibitory
  • Suggest that the data support the idea that inhibitory inputs maybe gating excitation.
  • Furthermore, co-inervated spines are stable, both during mormal experience and during monocular deprivation.
  • Monocular deprivation induces a pronounced loss of inhibitory synapses in binocular cortex.

{1462}
hide / / print
ref: -0 tags: 3D SHOT Alan Hillel Waller 2p photon holography date: 05-31-2019 22:19 gmt revision:4 [3] [2] [1] [0] [head]

PMID-29089483 Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT).

  • Pégard NC1,2, Mardinly AR1, Oldenburg IA1, Sridharan S1, Waller L2, Adesnik H3,4
  • Combines computer-generated holography and temporal focusing for single-shot (no scanning) two-photon photo-activation of opsins.
  • The beam intensity profile determines the dimensions of the custom temporal focusing pattern (CTFP), while phase, a previously unused degree of freedom, is engineered to make 3D holograph and temporal focusing compatible.
  • "To ensure good diffraction efficiency of all spectral components by the SLM, we used a lens Lc to apply a small spherical phase pattern. The focal length was adjusted so that each spectral component of the pulse spans across the short axis of the SLM in the Fourier domain".
    • That is, they spatially and temporally defocus the pulse to better fill the SLM. The short axis of the SLM in this case is Y, per supplementary figure 2.
  • The image of the diffraction grating determines the plane of temporal focusing (with lenses L1 and L2); there is a secondary geometric focus due to Lc behind the temporal plane, which serves as an aberration.
  • The diffraction grating causes the temporal pattern to scan to produce a semi-spherical stimulated area ('disc').
  • Rather than creating a custom 3D holographic shape for each neuron, the SLM is after the diffraction grating -- it imposes phase and space modulation to the CTFP, effectively convolving it with a holograph of a cloud of points & hence replicating at each point.

{1435}
hide / / print
ref: -0 tags: Na Ji 2p two photon fluorescent imaging pulse splitting damage bleaching date: 05-31-2019 19:55 gmt revision:5 [4] [3] [2] [1] [0] [head]

PMID-18204458 High-speed, low-photodamage nonlinear imaging using passive pulse splitters

  • Core idea: take a single pulse and spread it out to N=2 kN= 2^k pulses using reflections and delay lines.
  • Assume two optical processes, signal SI αS \propto I^{\alpha} and photobleaching/damage DI βD \propto I^{\beta} , β>α>1\beta \gt \alpha \gt 1
  • Then an NN pulse splitter requires N 11/αN^{1-1/\alpha} greater average power but reduces the damage by N 1β/α.N^{1-\beta/\alpha}.
  • At constant signal, the same NN pulse splitter requires N\sqrt{N} more power, consistent with two photon excitation (proportional to the square of the intensity: N pulses of N/N\sqrt{N}/N intensity, 1/N per pulse fluorescence, Σ1\Sigma \rightarrow 1 overall fluorescence.)
  • This allows for shorter dwell times, higher power at the sample, lower damage, slower photobleaching, and better SNR for fluorescently labeled slices.
  • Examine the list of references too, e.g. "Multiphoton multifocal microscopy exploiting a diffractive optical element" (2003)

{1384}
hide / / print
ref: -0 tags: NET probes SU-8 microfabrication sewing machine carbon fiber electrode insertion mice histology 2p date: 12-29-2017 04:38 gmt revision:1 [0] [head]

PMID-28246640 Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration

  • SU-8 asymptotic H2O absorption is 3.3% in PBS -- quite a bit higher than I expected, and higher than PI.
  • Faced yield problems with contact litho at 2-3um trace/space.
  • Good recordings out to 4 months!
  • 3 minutes / probe insertion.
  • Fab:
    • Ni release layer, Su-8 2000.5. "excellent tensile strength" --
      • Tensile strength 60 MPa
      • Youngs modulus 2.0 GPa
      • Elongation at break 6.5%
      • Water absorption, per spec sheet, 0.65% (but not PBS)
    • 500nm dielectric; < 1% crosstalk; see figure S12.
    • Pt or Au rec sites, 10um x 20um or 30 x 30um.
    • FFC connector, with Si substrate remaining.
  • Used transgenic mice, YFP expressed in neurons.
  • CA glue used before metabond, followed by Kwik-sil silicone.
  • Neuron yield not so great -- they need to plate the electrodes down to acceptable impedance. (figure S5)
    • Measured impedance ~ 1M at 1khz.
  • Unclear if 50um x 1um is really that much worse than 10um x 1.5um.
  • Histology looks realyl great, (figure S10).
  • Manuscript did not mention (though the did at the poster) problems with electrode pull-out; they deal with it in the same way, application of ACSF.