m8ta
use https for features.
text: sort by
tags: modified
type: chronology
{1478}
hide / / print
ref: -2013 tags: 2p two photon STED super resolution microscope date: 09-18-2019 02:22 gmt revision:0 [head]

PMID-23442956 Two-Photon Excitation STED Microscopy in Two Colors in Acute Brain Slices

  • Plenty of details on how they set up the microscope.

PMID-29932052 Chronic 2P-STED imaging reveals high turnover of spines in the hippocampus in vivo

{1417}
hide / / print
ref: -0 tags: synaptic plasticity 2-photon imaging inhibition excitation spines dendrites synapses 2p date: 05-31-2019 23:02 gmt revision:2 [1] [0] [head]

PMID-22542188 Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex.

  • Cre-recombinase-dependent labeling of postsynapitc scaffolding via Gephryn-Teal fluorophore fusion.
  • Also added Cre-eYFP to lavel the neurons
  • Electroporated in utero e16 mice.
    • Low concentration of Cre, high concentrations of Gephryn-Teal and Cre-eYFP constructs to attain sparse labeling.
  • Located the same dendrite imaged in-vivo in fixed tissue - !! - using serial-section electron microscopy.
  • 2230 dendritic spines and 1211 inhibitory synapses from 83 dendritic segments in 14 cells of 6 animals.
  • Some spines had inhibitory synapses on them -- 0.7 / 10um, vs 4.4 / 10um dendrite for excitatory spines. ~ 1.7 inhibitory
  • Suggest that the data support the idea that inhibitory inputs maybe gating excitation.
  • Furthermore, co-inervated spines are stable, both during mormal experience and during monocular deprivation.
  • Monocular deprivation induces a pronounced loss of inhibitory synapses in binocular cortex.

{1462}
hide / / print
ref: -0 tags: 3D SHOT Alan Hillel Waller 2p photon holography date: 05-31-2019 22:19 gmt revision:4 [3] [2] [1] [0] [head]

PMID-29089483 Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT).

  • Pégard NC1,2, Mardinly AR1, Oldenburg IA1, Sridharan S1, Waller L2, Adesnik H3,4
  • Combines computer-generated holography and temporal focusing for single-shot (no scanning) two-photon photo-activation of opsins.
  • The beam intensity profile determines the dimensions of the custom temporal focusing pattern (CTFP), while phase, a previously unused degree of freedom, is engineered to make 3D holograph and temporal focusing compatible.
  • "To ensure good diffraction efficiency of all spectral components by the SLM, we used a lens Lc to apply a small spherical phase pattern. The focal length was adjusted so that each spectral component of the pulse spans across the short axis of the SLM in the Fourier domain".
    • That is, they spatially and temporally defocus the pulse to better fill the SLM. The short axis of the SLM in this case is Y, per supplementary figure 2.
  • The image of the diffraction grating determines the plane of temporal focusing (with lenses L1 and L2); there is a secondary geometric focus due to Lc behind the temporal plane, which serves as an aberration.
  • The diffraction grating causes the temporal pattern to scan to produce a semi-spherical stimulated area ('disc').
  • Rather than creating a custom 3D holographic shape for each neuron, the SLM is after the diffraction grating -- it imposes phase and space modulation to the CTFP, effectively convolving it with a holograph of a cloud of points & hence replicating at each point.

{1435}
hide / / print
ref: -0 tags: Na Ji 2p two photon fluorescent imaging pulse splitting damage bleaching date: 05-31-2019 19:55 gmt revision:5 [4] [3] [2] [1] [0] [head]

PMID-18204458 High-speed, low-photodamage nonlinear imaging using passive pulse splitters

  • Core idea: take a single pulse and spread it out to N=2 kN= 2^k pulses using reflections and delay lines.
  • Assume two optical processes, signal SI αS \propto I^{\alpha} and photobleaching/damage DI βD \propto I^{\beta} , β>α>1\beta \gt \alpha \gt 1
  • Then an NN pulse splitter requires N 11/αN^{1-1/\alpha} greater average power but reduces the damage by N 1β/α.N^{1-\beta/\alpha}.
  • At constant signal, the same NN pulse splitter requires N\sqrt{N} more power, consistent with two photon excitation (proportional to the square of the intensity: N pulses of N/N\sqrt{N}/N intensity, 1/N per pulse fluorescence, Σ1\Sigma \rightarrow 1 overall fluorescence.)
  • This allows for shorter dwell times, higher power at the sample, lower damage, slower photobleaching, and better SNR for fluorescently labeled slices.
  • Examine the list of references too, e.g. "Multiphoton multifocal microscopy exploiting a diffractive optical element" (2003)

{1384}
hide / / print
ref: -0 tags: NET probes SU-8 microfabrication sewing machine carbon fiber electrode insertion mice histology 2p date: 12-29-2017 04:38 gmt revision:1 [0] [head]

PMID-28246640 Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration

  • SU-8 asymptotic H2O absorption is 3.3% in PBS -- quite a bit higher than I expected, and higher than PI.
  • Faced yield problems with contact litho at 2-3um trace/space.
  • Good recordings out to 4 months!
  • 3 minutes / probe insertion.
  • Fab:
    • Ni release layer, Su-8 2000.5. "excellent tensile strength" --
      • Tensile strength 60 MPa
      • Youngs modulus 2.0 GPa
      • Elongation at break 6.5%
      • Water absorption, per spec sheet, 0.65% (but not PBS)
    • 500nm dielectric; < 1% crosstalk; see figure S12.
    • Pt or Au rec sites, 10um x 20um or 30 x 30um.
    • FFC connector, with Si substrate remaining.
  • Used transgenic mice, YFP expressed in neurons.
  • CA glue used before metabond, followed by Kwik-sil silicone.
  • Neuron yield not so great -- they need to plate the electrodes down to acceptable impedance. (figure S5)
    • Measured impedance ~ 1M at 1khz.
  • Unclear if 50um x 1um is really that much worse than 10um x 1.5um.
  • Histology looks realyl great, (figure S10).
  • Manuscript did not mention (though the did at the poster) problems with electrode pull-out; they deal with it in the same way, application of ACSF.