m8ta
use https for features.
text: sort by
tags: modified
type: chronology
{1490}
hide / / print
ref: -2011 tags: two photon cross section fluorescent protein photobleaching Drobizhev gcamp date: 11-04-2020 18:07 gmt revision:9 [8] [7] [6] [5] [4] [3] [head]

PMID-21527931 Two-photon absorption properties of fluorescent proteins

  • Significant 2-photon cross section of red fluorescent proteins (same chromophore as DsRed) in the 700 - 770nm range, accessible to Ti:sapphire lasers ...
    • This corresponds to a S 0S nS_0 \rightarrow S_n transition
    • But but, photobleaching is an order of magnitude slower when excited by the direct S 0S 1S_0 \rightarrow S_1 transition (but the fluorophores can be significantly less bright in this regime).
      • Quote: the photobleaching of DsRed slows down by an order of magnitude when the excitation wavelength is shifted to the red, from 750 to 950 nm (32).
    • See also PMID-18027924
  • Further work by same authors: Absolute Two-Photon Absorption Spectra and Two-Photon Brightness of Orange and Red Fluorescent Proteins
    • " TagRFP possesses the highest two-photon cross section, σ2 = 315 GM, and brightness, σ2φ = 130 GM, where φ is the fluorescence quantum yield. At longer wavelengths, 1000–1100 nm, tdTomato has the largest values, σ2 = 216 GM and σ2φ = 120 GM, per protein chain. Compared to the benchmark EGFP, these proteins present 3–4 times improvement in two-photon brightness."
    • "Single-photon properties of the FPs are poor predictors of which fluorescent proteins will be optimal in two-photon applications. It follows that additional mutagenesis efforts to improve two-photon cross section will benefit the field."
  • 2P cross-section in both the 700-800nm and 1000-1100 nm range corresponds to the chromophore polarizability, and is not related to 1p cross section.
  • This can be useflu for multicolor imaging: excitation of the higher S0 → Sn transition of TagRFP simultaneously with the first, S0 → S1, transition of mKalama1 makes dual-color two-photon imaging possible with a single excitation laser wavelength (13)
  • Why are red GECIs based on mApple (rGECO1) or mRuby (RCaMP)? dsRed2 or TagRFP are much better .. but maybe they don't have CP variants.
  • from https://elifesciences.org/articles/12727

{1466}
hide / / print
ref: -0 tags: optical gain media lasers cross section dye date: 06-13-2019 15:13 gmt revision:2 [1] [0] [head]

Eminently useful. Source: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-974-fundamentals-of-photonics-quantum-electronics-spring-2006/lecture-notes/chapter7.pdf

Laser Dye technology by Peter Hammond

  • This paper is another great resource!
  • Lists the stimulated emission cross-section for Rhodamine-6G as 4e-16 @ 550nm, consistent with the table above.
  • At a (high) concentration of 2mMol (1 g/l), 1/e penetration depth is 20um.
    • Depending on the solvent, there may be aggregation and stacking / quenching.
  • Tumbling time of Rhodamine 6G in ethanol is 20 to 300ps; fluorescence lifetime in oscillators is 10's of ps, so there is definitely polarization sensitive amplification.
  • Generally in dye lasers, the emission cross-section must be higher than the excited state absorption, σ eσ \sigma_e - \sigma^\star most important.
  • Bacteria can actually subsist on rhodamine-similar sulfonated dyes in aqueous solutions! Wow.