m8ta
use https for features.
text: sort by
tags: modified
type: chronology
[0] Jackson A, Mavoori J, Fetz EE, Correlations between the same motor cortex cells and arm muscles during a trained task, free behavior, and natural sleep in the macaque monkey.J Neurophysiol 97:1, 360-74 (2007 Jan)

[0] Jackson A, Mavoori J, Fetz EE, Long-term motor cortex plasticity induced by an electronic neural implant.Nature 444:7115, 56-60 (2006 Nov 2)

{331}
hide / / print
ref: Jackson-2007.01 tags: Fetz neurochip sleep motor control BMI free behavior EMG date: 09-13-2019 02:21 gmt revision:4 [3] [2] [1] [0] [head]

PMID-17021028[0] Correlations Between the Same Motor Cortex Cells and Arm Muscles During a Trained Task, Free Behavior, and Natural Sleep in the Macaque Monkey

  • used their implanted "neurochip" recorder that recorded both EMG and neural activity. The neurochip buffers data and transmits via IR offline. It doesn't have all that much flash onboard - 16Mb.
    • used teflon-insulated 50um tungsten wires.
  • confirmed that there is a strong causal relationship, constant over the course of weeks, between motor cortex units and EMG activity.
    • some causal relationships between neural firing and EMG varied dependent on the task. Additive / multiplicative encoding?
  • this relationship was different at night, during REM sleep, though (?)
  • point out, as Todorov did, that Stereotyped motion imposes correlation between movement parameters, which could lead to spurrious relationships being mistaken for neural coding.
    • Experiments with naturalistic movement are essential for understanding innate, untrained neural control.
  • references {597} Suner et al 2005 as a previous study of long term cortical recordings. (utah probe)
  • during sleep, M1 cells exhibited a cyclical patter on quiescence followed by periods of elevated activity;
    • the cycle lasted 40-60 minutes;
    • EMG activity was seen at entrance and exit to the elevated activity period.
    • during periods of highest cortical activity, muscle activity was completely suppressed.
    • peak firing rates were above 100hz! (mean: 12-16hz).

____References____

{69}
hide / / print
ref: Jackson-2006.11 tags: Fetz Andrew Jackson BMI motor learning microstimulation date: 12-16-2011 04:20 gmt revision:6 [5] [4] [3] [2] [1] [0] [head]

PMID-17057705 Long-term motor cortex plasticity induced by an electronic neural implant.

  • used an implanted neurochip.
  • record from site A in motor cortex (encodes movement A)
  • stimulate site B of motor cortex (encodes movement B)
  • after a few days of learning, stimulate A and generate mixure of AB then B-type movements.
  • changes only occurred when stimuli were delivered within 50ms of recorded spikes.
  • quantified with measurement of (to) radial/ulnar deviation and flexion/extension of the wrist.
  • stimulation in target (site B) was completely sub-threshold (40ua)
  • distance between recording and stimulation site did not matter.
  • they claim this is from Hebb's rule: if one neuron fires just before another (e.g. it contributes to the second's firing), then the connection between the two is strengthened. However, i originally thought this was because site A was controlling the betz cells in B, therefore for consistency A's map was modified to agree with its /function/.
  • repetitive high-frequency stimulation has been shown to expand movement representations in the motor cortex of rats (hmm.. interesting)
  • motor cortex is highly active in REM

____References____