{1180} revision 2 modified: 12-23-2012 09:12 gmt

PMID-19654752 Detecting intrinsic scattering changes correlated to neuron action potentials using optical coherence imaging.

  • Aplysia, intrinsic imaging of scattering change following electrical stimulation.
    • Why did it take so long for them to get this paper out.. ?
  • Nicolelis first cited author.
  • Quality of recording not necessarily high.
  • quote: "Typical transverse resolutions in OCT (10-20um) are likely insufficient to identify smaller mamallian neurons that are often studied in neuroscience."
    • Solution: optical coherence microscopy (OCM), where a higher NA lens focuses the light to a smaller spot.
    • Expense: shorter depth-of-field.
  • Why does this work? "One mechanism of these optical signals is believed to be a realignment of charged membrane proteins in response to voltage change [6].
  • A delay of roughly 70ms was observed between the change in membrane voltage and the change in scattering intensity.
    • That's slow! Might be due to conduction velocity in Aplysia.
  • SNR of scattering measurement not too high -- the neurons are alive, afterall, and their normal biological processes cause scattering changes.
    • Killing the neurons with KCl dramatically decreased the variance of scattering, consistent with this hpothesis.
  • Birefringence: "Changes in the birefringence of nerves due to electrical activity have been shown to be an order of magnitude larger than scattering intensity changes" PMID-5649693