m8ta
You are not authenticated, login.
text: sort by
tags: modified
type: chronology
[0] Fetz EE, Volitional control of neural activity: implications for brain-computer interfaces.J Physiol 579:Pt 3, 571-9 (2007 Mar 15)

{1568}
hide / / print
ref: -2021 tags: burst bio plausible gradient learning credit assignment richards apical dendrites date: 05-05-2022 15:44 gmt revision:2 [1] [0] [head]

Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits

  • Roughly, single-events indicate the normal feature responses of neurons, while multiple-spike bursts indicate error signals.
  • Bursts are triggered by depolarizing currents to the apical dendrites, which can be uncoupled from bottom-up event rate, which arises from perisomatic inputs / basal dendrites.
  • The fact that the two are imperfectly multiplexed is OK, as in backprop the magnitude of the error signal is modulated by the activity of the feature detector.
  • "For credit assignment in hierarchical networks, connections should obey four constraints:
    • Feedback must steer the magnitude and sign of plasticity
    • Feedback signals from higher-order areas must be multipleed with feedforward signals from lower-order areas so that credit assignment can percolate down the hierarch with minimal effect on sensory information
    • There should be some form of alignment between feedforward and feedback connections
    • Integration of credit-carrying signals should be nearly linear to avoid saturation
      • Seems it's easy to saturate the burst probability within a window of background event rate, e.g. the window is all bursts to no bursts.
  • Perisomatic inputs were short-term depressing, whereas apical dendrite synapses were short-term facilitating.
    • This is a form of filtering on burst rates? E.g. the propagate better down than up?
  • They experiment with a series of models, one for solving the XOR task, and subsequent for MNIST and CIFAR.
  • The later, larger models are mean-field models, rather than biophysical neuron models, and have a few extra features:
    • Interneurons, presumably SOM neurons, are used to keep bursting within a linear regime via a 'simple' (supplementary) learning rule.
    • Feedback alignment occurs by adjusting both the feedforward and feedback weights with the same propagated error signal + weight decay.
  • The credit assignment problem, or in the case of unsupervised learning, the coordination problem, is very real: how do you change a middle-feature to improve representations in higher (and lower) levels of the hierarchy?
    • They mention that using REINFORCE on the same network was unable to find a solution.
    • Put another way: usually you need to coordinate the weight changes in a network; changing weights individually based on a global error signal (or objective function) does not readily work...
      • Though evolution seems to be quite productive at getting the settings of (very) large sets of interdependent coefficients all to be 'correct' and (sometimes) beautiful.
      • How? Why? Friston's free energy principle? Lol.

{1534}
hide / / print
ref: -2020 tags: current opinion in neurobiology Kriegeskorte review article deep learning neural nets circles date: 02-23-2021 17:40 gmt revision:2 [1] [0] [head]

Going in circles is the way forward: the role of recurrence in visual inference

I think the best part of this article are the references -- a nicely complete listing of, well, the current opinion in Neurobiology! (Note that this issue is edited by our own Karel Svoboda, hence there are a good number of Janelians in the author list..)

The gestalt of the review is that deep neural networks need to be recurrent, not purely feed-forward. This results in savings in overall network size, and increase in the achievable computational complexity, perhaps via the incorporation of priors and temporal-spatial information. All this again makes perfect sense and matches my sense of prevailing opinion. Of course, we are left wanting more: all this recurrence ought to be structured in some way.

To me, a rather naive way of thinking about it is that feed-forward layers cause weak activations, which are 'amplified' or 'selected for' in downstream neurons. These neurons proximally code for 'causes' or local reasons, based on the supported hypothesis that the brain has a good temporal-spatial model of the visuo-motor world. The causes then can either explain away the visual input, leading to balanced E-I, or fail to explain it, in which the excess activity is either rectified by engaging more circuits or engaging synaptic plasticity.

A critical part of this hypothesis is some degree of binding / disentanglement / spatio-temporal re-assignment. While not all models of computation require registers / variables -- RNNs are Turning-complete, e.g., I remain stuck on the idea that, to explain phenomenological experience and practical cognition, the brain much have some means of 'binding'. A reasonable place to look is the apical tuft dendrites, which are capable of storing temporary state (calcium spikes, NMDA spikes), undergo rapid synaptic plasticity, and are so dense that they can reasonably store the outer-product space of binding.

There is mounting evidence for apical tufts working independently / in parallel is investigations of high-gamma in ECoG: PMID-32851172 Dissociation of broadband high-frequency activity and neuronal firing in the neocortex. "High gamma" shows little correlation with MUA when you differentiate early-deep and late-superficial responses, "consistent with the view it reflects dendritic processing separable from local neuronal firing"

{1501}
hide / / print
ref: -2019 tags: Vale photostability bioarxiv DNA oragami photobleaching date: 03-10-2020 21:59 gmt revision:5 [4] [3] [2] [1] [0] [head]

A 6-nm ultra-photostable DNA Fluorocube for fluorescence imaging

  • Cy3n = sulfonated version of Cy3.
  • JF549 = azetidine modified version of tetramethyl rhodamine.

Also including some correspondence with the authors:

Me

Nice work and nice paper, thanks for sharing .. and not at all what I had expected from Ron's comments! Below are some comments ... would love your opinion.

I'd expect that the molar absorption coefficients for the fluorocubes should be ~6x larger than for the free dyes and the single dye cubes (measured?), yet the photon yields for all except Cy3N maybe are around the yield for one dye molecule. So the quantum yield must be decreased by ~6x?

This in turn might be from a middling FRET which reduces lifetime, thereby the probability of ISC, photoelectron transfer, and hence photobleaching.

I wonder if in the case of ATTO 647N Cy5 and Cy3, the DNA is partly shielding the fluorphores from solvent (ala ethidium bromide), which also helps with stability, just like in fluorescent proteins. ATTO 647N generates a lot of singlet oxygen, who knows what it's doing to DNA.

Can you do a log-log autocorrelation of the blinking timeseries of the constructs? This may reveal different rate constants controlling dark/light states (though, for 6 coupled objects, might not be interpretable!)

Also, given the effect of DNA shielding, have you compared to free dyes to single-dye cubes other than supp fig 10? The fact that sulfonation made such a huge effect in brightness is suggestive.

Again, these are super interesting & exciting results!

Author

I haven't directly looked at the molar absorption coefficient but judging from the data that I collected for the absorption spectra, there is certainly an increase for the fluorocubes compared to single dyes. I agree that this would be an interesting experiment and I am planning collect data to measure the molar absorption coefficient. I would also expect a ~6 fold increase for the Fluorocubes.

Yes, we suspect homo FRET to help reduce photobleaching. So far we only measured lifetimes in bulk but are planning to obtain lifetime data on the single-molecule level soon.

We also wondered if the DNA is providing some kind of shield for the fluorophores but could not design an experiment to directly test this hypothesis. If you have a suggestion, that would be wonderful.

The log-log autocorrelation of blinking events is indeed difficult to interpret. Already individual intensity traces of fluorocubes are difficult to analyze as many of them get brighter before they bleach. We are also wondering if some fluorocubes are emitting two photons simultaneously. We will hopefully be able to measure this soon.

{1459}
hide / / print
ref: -2018 tags: Michael Levin youtube talk NIPS 2018 regeneration bioelectricity organism patterning flatworm date: 04-09-2019 18:50 gmt revision:1 [0] [head]

What Bodies Think About: Bioelectric Computation Outside the Nervous System - NeurIPS 2018

  • Short notes from watching the video, mostly interesting factoids: (This is a somewhat more coordinated narrative in the video. Am resisting ending each of these statements with and exclamation point).
  • Human children up to 7-11 years old can regenerate their fingertips.
  • Human embryos, when split in half early, develop into two normal humans; mouse embryos, when squished together, make one normal mouse.
  • Butterflies retain memories from their caterpillar stage, despite their brains liquefying during metamorphosis.
  • Flatworms are immortal, and can both grow and contract, as the environment requires.
    • They can also regenerate a whole body from segments, and know to make one head, tail, gut etc.
  • Single cell organisms, e.g. Lacrymaria, can have complex (and fast!) foraging / hunting plans -- without a brain or anything like it.
  • Axolotl can regenerate many parts of their body (appendages etc), including parts of the nervous system.
  • Frog embryos can self-organize an experimenter jumbled body plan, despite the initial organization having never been experienced in evolution.
  • Salamanders, when their tail is grafted into a foot/leg position, remodel the transplant into a leg and foot.
  • Neurotransmitters are ancient; fungi, who diverged from other forms of life about 1.5 billion years ago, still use the same set of inter-cell transmitters e.g. serotonin, which is why modulatory substances from them have high affinity & a strong effect on humans.
  • Levin, collaborators and other developmental biologists have been using voltage indicators in embryos ... this is not just for neurons.
  • Can make different species head shapes in flatworms by exposing them to ion-channel modulating drugs. This despite the fact that the respective head shapes are from species that have been evolving separately for 150 million years.
  • Indeed, you can reprogram (with light gated ion channels, drugs, etc) to body shapes not seen in nature or not explored by evolution.
    • That said, this was experimental, not by design; Levin himself remarks that the biology that generates these body plans is not known.
  • Flatworms can sore memory in bioelectric networks.
  • Frogs don't normally regenerate their limbs. But, with a drug cocktail targeting bioelectric signaling, they can regenerate semi-functional legs, complete with nerves, muscle, bones, and cartilage. The legs are functional (enough).
  • Manipulations of bioelectric signaling can reverse very serious genetic problems, e.g. deletion of Notch, to the point that tadpoles regain some ability for memory creation & recall.

  • I wonder how so much information can go through a the apparently scalar channel of membrane voltage. It seems you'd get symbol interference, and that many more signals would be required to pattern organs.
  • That said, calcium is used a great many places in the cell for all sorts of signaling tasks, over many different timescales as well, and it doesn't seem to be plagued by interference.
    • First question from the audience was how cells differentiate organismal patterning signals and behavioral signals, e.g. muscle contraction.

{1441}
hide / / print
ref: -2018 tags: biologically inspired deep learning feedback alignment direct difference target propagation date: 03-15-2019 05:51 gmt revision:5 [4] [3] [2] [1] [0] [head]

Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures

  • Sergey Bartunov, Adam Santoro, Blake A. Richards, Luke Marris, Geoffrey E. Hinton, Timothy Lillicrap
  • As is known, many algorithms work well on MNIST, but fail on more complicated tasks, like CIFAR and ImageNet.
  • In their experiments, backprop still fares better than any of the biologically inspired / biologically plausible learning rules. This includes:
    • Feedback alignment {1432} {1423}
    • Vanilla target propagation
      • Problem: with convergent networks, layer inverses (top-down) will map all items of the same class to one target vector in each layer, which is very limiting.
      • Hence this algorithm was not directly investigated.
    • Difference target propagation (2015)
      • Uses the per-layer target as h^ l=g(h^ l+1;λ l+1)+[h lg(h l+1;λ l+1)]\hat{h}_l = g(\hat{h}_{l+1}; \lambda_{l+1}) + [h_l - g(h_{l+1};\lambda_{l+1})]
      • Or: h^ l=h l+g(h^ l+1;λ l+1)g(h l+1;λ l+1)\hat{h}_l = h_l + g(\hat{h}_{l+1}; \lambda_{l+1}) - g(h_{l+1};\lambda_{l+1}) where λ l\lambda_{l} are the parameters for the inverse model; g()g() is the sum and nonlinearity.
      • That is, the target is modified ala delta rule by the difference between inverse-propagated higher layer target and inverse-propagated higher level activity.
        • Why? h lh_{l} should approach h^ l\hat{h}_{l} as h l+1h_{l+1} approaches h^ l+1\hat{h}_{l+1} .
        • Otherwise, the parameters in lower layers continue to be updated even when low loss is reached in the upper layers. (from original paper).
      • The last to penultimate layer weights is trained via backprop to prevent template impoverishment as noted above.
    • Simplified difference target propagation
      • The substitute a biologically plausible learning rule for the penultimate layer,
      • h^ L1=h L1+g(h^ L;λ L)g(h L;λ L)\hat{h}_{L-1} = h_{L-1} + g(\hat{h}_L;\lambda_L) - g(h_L;\lambda_L) where there are LL layers.
      • It's the same rule as the other layers.
      • Hence subject to impoverishment problem with low-entropy labels.
    • Auxiliary output simplified difference target propagation
      • Add a vector zz to the last layer activation, which carries information about the input vector.
      • zz is just a set of random features from the activation h L1h_{L-1} .
  • Used both fully connected and locally-connected (e.g. convolution without weight sharing) MLP.
  • It's not so great:
  • Target propagation seems like a weak learner, worse than feedback alignment; not only is the feedback limited, but it does not take advantage of the statistics of the input.
    • Hence, some of these schemes may work better when combined with unsupervised learning rules.
    • Still, in the original paper they use difference-target propagation with autoencoders, and get reasonable stroke features..
  • Their general result that networks and learning rules need to be tested on more difficult tasks rings true, and might well be the main point of this otherwise meh paper.

{1394}
hide / / print
ref: -0 tags: Courtine PDMS soft biomaterials spinal cord e-dura date: 12-22-2017 01:29 gmt revision:0 [head]

Materials and technologies for soft implantable neuroprostheses

  • Quote: In humans, both the spinal cord and its meningeal protective membranes can experience as much as 10–20% tensile strain and
displacement (relative to the spinal canal) during normal postural movements. This motion corresponds to displacements on the order of centimetres17. The deformations relative to the spinal cord in animal models, such as rodents or non-human primates, are likely to be even larger.

{1393}
hide / / print
ref: -2001 tags: polyimide Kipke bioactive flexible electrode arrays date: 12-22-2017 01:16 gmt revision:2 [1] [0] [head]

PMID-11327505 Flexible polyimide-based intracortical electrode arrays with bioactive capability.

  • Appears to be the first or one of the first use of thin-film polyimide for intracortical recording; will have to cite.
  • Fab protocol: 500nm release thermal oxide, photo-paternable PI, Cr-Au metalization, O2 plasma de-scum for adhesion (ish?), <20um total thickness.
  • Conductive epoxy attachment to connector.

{1391}
hide / / print
ref: -0 tags: computational biology evolution metabolic networks andreas wagner genotype phenotype network date: 06-12-2017 19:35 gmt revision:1 [0] [head]

Evolutionary Plasticity and Innovations in Complex Metabolic Reaction Networks

  • ‘’João F. Matias Rodrigues, Andreas Wagner ‘’
  • Our observations suggest that the robustness of the Escherichia coli metabolic network to mutations is typical of networks with the same phenotype.
  • We demonstrate that networks with the same phenotype form large sets that can be traversed through single mutations, and that single mutations of different genotypes with the same phenotype can yield very different novel phenotypes
  • Entirely computational study.
    • Examines what is possible given known metabolic building-blocks.
  • Methodology: collated a list of all metabolic reactions in E. Coli (726 reactions, excluding 205 transport reactions) out of 5870 possible reactions.
    • Then ran random-walk mutation experiments to see where the genotype + phenotype could move. Each point in the genotype had to be viable on either a rich (many carbon source) or minimal (glucose) growth medium.
    • Viability was determined by Flux-balance analysis (FBA).
      • In our work we use a set of biochemical precursors from E. coli 47-49 as the set of required compounds a network needs to synthesize, ‘’’by using linear programming to optimize the flux through a specific objective function’’’, in this case the reaction representing the production of biomass precursors we are able to know if a specific metabolic network is able to synthesize the precursors or not.
      • Used Coin-OR and Ilog to optimize the metabolic concentrations (I think?) per given network.
    • This included the ability to synthesize all required precursor biomolecules; see supplementary information.
    • ‘’’“Viable” is highly permissive -- non-zero biomolecule concentration using FBA and linear programming. ‘’’
    • Genomic distances = hamming distance between binary vectors, where 1 = enzyme / reaction possible; 0 = mutated off; 0 = identical genotype, 1 = completely different genotype.
  • Between pairs of viable genetic-metabolic networks, only a minority (30 - 40%) of reactions are essential,
    • Which naturally increases with increasing carbon source diversity:
    • When they go back an examine networks that can sustain life on any of (up to) 60 carbon sources, and again measure the distance from the original E. Coli genome, they find this added robustness does not significantly constrain network architecture.

Summary thoughts: This is a highly interesting study, insofar that the authors show substantial support for their hypotheses that phenotypes can be explored through random-walk non-lethal mutations of the genotype, and this is somewhat invariant to the source of carbon for known biochemical reactions. What gives me pause is the use of linear programming / optimization when setting the relative concentrations of biomolecules, and the permissive criteria for accepting these networks; real life (I would imagine) is far more constrained. Relative and absolute concentrations matter.

Still, the study does reflect some robustness. I suggest that a good control would be to ‘fuzz’ the list of available reactions based on statistical criteria, and see if the results still hold. Then, go back and make the reactions un-biological or less networked, and see if this destroys the measured degrees of robustness.

{1376}
hide / / print
ref: -0 tags: review neural recording penn state extensive biopolymers date: 02-06-2017 23:09 gmt revision:0 [head]

PMID-24677434 A Review of Organic and Inorganic Biomaterials for Neural Interfaces

  • Not necessarily insightful, but certainly exhaustive review of all the various problems and strategies for neural interfacing.
  • Some emphasis on graphene, conductive polymers, and biological surface treatments for reducing FBR.
  • Cites 467 articles!

{748}
hide / / print
ref: Leung-2008.08 tags: biocompatibility alginate tissue response immunochemistry microglia insulation spin coating Tresco recording histology MEA date: 01-28-2013 21:19 gmt revision:4 [3] [2] [1] [0] [head]

PMID-18485471[0] Characterization of microglial attachment and cytokine release on biomaterials of differing surface chemistry

  • The important result is that materials with low protein-binding (e.g. alginate) have fewer bound microglia, hence better biocompatibility. It also seems to help if the material is highly hydrophilic.
    • Yes alginate is made from algae.
  • Used Michigan probes for implantation.
  • ED1 = pan-macrophage marker.
    • (quote:) Quantification of cells on the surface indicated that the number of adherent microglia appeared higher on the smooth side of the electrode compared to the grooved, recording site side (Fig. 2B), and declined with time. However, at no point were electrodes completely free of attached and activated microglial cells nor did these cells disappear from the interfacial zone along the electrode tract.
    • but these were not coated with anything new .. ???

____References____

[0] Leung BK, Biran R, Underwood CJ, Tresco PA, Characterization of microglial attachment and cytokine release on biomaterials of differing surface chemistry.Biomaterials 29:23, 3289-97 (2008 Aug)

{1036}
hide / / print
ref: -0 tags: decoding recording todo read biocompatibility histology electrodes future date: 01-28-2013 20:52 gmt revision:9 [8] [7] [6] [5] [4] [3] [head]

Things to read!

decoding:

  • PMID-20359500 Population decoding of motor cortical activity using a generalized linear model with hidden states
  • Robust satisficing linear regression: Performance/robustness trade-off and consistency criterion
  • PMID-15813408 Closed-loop cortical control of direction using support vector machines
  • Efficient Decoding With Steady-State Kalman Filter in Neural Interface Systems
    • Fixed gain: We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences.
    • We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25±3 single units by a factor of 7.0±0.9.

electrodes:

other random scribblings: Vascularization {1027} histology {736},{737} and size {1028},{747},{1026}, insulation {1033}. How very very important -- as important or moreso than the recording technology. What has happened to {149} ?

{1220}
hide / / print
ref: -0 tags: histology review electrode response bioactive coatings date: 01-28-2013 20:16 gmt revision:0 [head]

PMID-20577634 Biocompatibility of intracortical microelectrodes: current status and future prospects.

  • ... but the most widely used method to enhance biocompatibility is the chemical modification of neural probe surfaces with anti-inflammatory compounds, adhesion proteins, or bioactive molecules (Heiduschka and Thanos, 1998; He et al., 2006; Ludwig et al., 2006; Moxon et al., 2007; Rennaker et al., 2007; Seymour and Kipke, 2007; Zhong and Bellamkonda, 2007; Leung et al., 2008; Williams, 2008; Grill et al., 2009)
    • Have any of these achieved success?
    • Many other polymers are basically biocompatible, provided they still insulate after equilibriating with the surrounding vapor pressure.
    • Personally I don't think biocoatings wil lmatter much if there is persistent shear at the interface.
  • Does make sense to have the electrode surface attractive to neurons (Kennedy..). For a later date.

{1201}
hide / / print
ref: Kato-2006.01 tags: bioactive neural probes flexible parylene japan Kato microspheres date: 01-28-2013 03:57 gmt revision:1 [0] [head]

PMID-17946847[0] Preliminary study of multichannel flexible neural probes coated with hybrid biodegradable polymer.

  • Conference proceedings. a little light.
  • :-)
  • probes made of parylene-C

____References____

[0] Kato Y, Saito I, Hoshino T, Suzuki T, Mabuchi K, Preliminary study of multichannel flexible neural probes coated with hybrid biodegradable polymer.Conf Proc IEEE Eng Med Biol Soc 1no Issue 660-3 (2006)

{746}
hide / / print
ref: Sanders-2000.1 tags: polymer fiber immune reaction biocompatibility rats polycaprolactone recording electrodes histology MEA date: 01-28-2013 00:01 gmt revision:11 [10] [9] [8] [7] [6] [5] [head]

PMID-10906696[0] Tissue response to single-polymer fibers of varying diameters: evaluation of fibrous encapsulation and macrophage density.

  • Fibers smaller than 6μm6 \mu m show reduced immune response.
    • Fibers implanted in the subcutaneous dorsum (below the skin in the back of rats).
    • Polypropylene. (like rope).
    • Wish the result extended to small beads & small electrodes. 7μm7 \mu m is tiny, but possible with insulated Au wires.
      • Beads: try PMID-1913150 -- shows that the 600um - 50um beads ('microspheres') are well tolerated.
      • Also {750}.
  • Macrophage density in tissue with fiber diameters 2.1-5.9um comparable to that of unoperated contralateral control.

"

fiber diametercapsule thickness
2.1-5.90.6
6.5-10.611.7
11.1-15.820.3
16.7-26.725.5

____References____

[0] Sanders JE, Stiles CE, Hayes CL, Tissue response to single-polymer fibers of varying diameters: evaluation of fibrous encapsulation and macrophage density.J Biomed Mater Res 52:1, 231-7 (2000 Oct)

{750}
hide / / print
ref: Menei-1994.09 tags: microspheres beads polycaprolactone biocompatible drug delivery histology date: 01-27-2013 20:54 gmt revision:3 [2] [1] [0] [head]

PMID-7814435 Fate and biocompatibility of three types of microspheres implanted into the brain.

  • microspheres ( 24μm 24 \mu m ) appear to be engulfed or surrounded by histocytic cells.
  • poly(e-caprolactone), which is supposed to be biodegradable, did not dissolve in the brain. The polymer is hydrophobic.
  • 20um spheres could be engulfed by macrophages; their microspheres were too large, and were encapsulated in a thin coallagen layer and astrocytic process.
  • no scale bars - annoying - but we can estimate the size of the coating to be about the same size as the beads themselves.

{1033}
hide / / print
ref: Seymour-2009.1 tags: Parylene MEA biocompatibility pin hole water saturation PPX date: 01-25-2013 01:19 gmt revision:2 [1] [0] [head]

PMID-19703712[0] The insulation performance of reactive parylene films in implantable electronic devices.

  • Describe the development and testing of a superior form of parylene: poly(p-xylylene) functionalized with reactive group X (PPX-X)
  • Heat-treated PPX-X device impedance was 800% greater at 10kHz and 70% greater at 1Hz relative to heated parylene-C controls after 60 days (in saline).
  • Better wet attachment to the metal.

____References____

[0] Seymour JP, Elkasabi YM, Chen HY, Lahann J, Kipke DR, The insulation performance of reactive parylene films in implantable electronic devices.Biomaterials 30:31, 6158-67 (2009 Oct)

{749}
hide / / print
ref: Biran-2007.07 tags: tresco biocompatibility tether skull electrodes Michigan probe recording Tresco date: 01-24-2013 20:11 gmt revision:6 [5] [4] [3] [2] [1] [0] [head]

PMID-17266019[0] The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull.

  • Good, convincing, figures.

____References____

[0] Biran R, Martin DC, Tresco PA, The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull.J Biomed Mater Res A 82:1, 169-78 (2007 Jul)

{1053}
hide / / print
ref: Leach-2010.02 tags: BMI challenges histology biocompatibility review date: 01-16-2012 18:22 gmt revision:4 [3] [2] [1] [0] [head]

PMID-20161810[0] Bridging the Divide between Neuroprosthetic Design, Tissue Engineering and Neurobiology

  • Neuroprosthetic device technology has seen major advances in recent years but the full potential of these devices remains unrealized due to outstanding challenges, such as the ability to record consistently over long periods of time.
  • Discuss promising new treatments based on developmental and cancer biology (?)
  • Suggest controlled drug release as the tissue is healing. Makes sense.

____References____

[0] Leach JB, Achyuta AK, Murthy SK, Bridging the Divide between Neuroprosthetic Design, Tissue Engineering and Neurobiology.Front Neuroeng 2no Issue 18 (2010 Feb 8)

{349}
hide / / print
ref: thesis-0 tags: clementine 042007 operant conditioning biofeedback tlh24 date: 01-06-2012 03:08 gmt revision:4 [3] [2] [1] [0] [head]

channel 29 controlled the X direction:

channel 81, the Y direction (this one was very highly modulated, and the monkey could get to a high rate ~60Hz. note that both units are sorted as one -- I ought to do the same on the other channels from now on, as this was rather predictive (this is duplicating Debbie Won's results):

However, when I ran a wiener filter on the binned spike rates (this is not the rates as estimated through the polynomial filter), ch 81 was most predictive for target X position; ch 29, Y target position (?). This is in agreement with population-wide predictions of target position: target X was predicted with low fidelity (1.12; cc = 0.35 or so); target Y was, apparently, unpredicted. I don't understand why this is, as I trained the monkey for 1/2 hour on just the opposite. Actually this is because the targets were not in a random sequence - they were in a CCW sequence, hence the neuronal activity was correlated to the last target, hence ch 81 to target X!

for reference, here is the ouput of bmi_sql:

order of columns: unit,channel, lag, snr, variable

ans =

    1.0000   80.0000    5.0000    1.0909    7.0000
    1.0000   80.0000    4.0000    1.0705    7.0000
    1.0000   80.0000    3.0000    1.0575    7.0000
    1.0000   80.0000    2.0000    1.0485    7.0000
    1.0000   80.0000    1.0000    1.0402    7.0000
    1.0000   28.0000    4.0000    1.0318    8.0000
    1.0000   76.0000    2.0000    1.0238   11.0000
    1.0000   76.0000    5.0000    1.0225   11.0000
    1.0000   17.0000         0    1.0209   11.0000
    1.0000   63.0000    3.0000    1.0202    8.0000

movies of the performance are here:

{731}
hide / / print
ref: Mohseni-2004.05 tags: recording amplifier biopotential Mohseni Najafi date: 01-03-2012 01:09 gmt revision:2 [1] [0] [head]

PMID-15132510[0] A fully Integrated Neural Recording Amplifier with DC Input Stabilization

  • The DC stabilization is the interesting part - use subthreshold PMOS transistors.
  • NEF not so good on this one - about 10. {729} much better.

____References____

[0] Mohseni P, Najafi K, A fully integrated neural recording amplifier with DC input stabilization.IEEE Trans Biomed Eng 51:5, 832-7 (2004 May)

{791}
hide / / print
ref: -0 tags: live origin biochemistry ocean vents date: 10-21-2009 02:23 gmt revision:0 [head]

Our ancestor, a proton powered rock?-- great article, wish i knew more of the biochemistry behind this research.

linked from that, something of a less pure science:

Future women, shorter, plumper, more fertile --read the comments, some of them are insane (but provocative?)! Viz:

  • I think there's a growing conscious awareness among men that tall, (generally) intelligent women are actually not good catches despite their good looks. They're prone to psychosexual neurosis, are high-maintenance, competitive, self-centered and often simply don't want to have the man's children. Much of that is socially indoctrinated behavior (in North America) but there is probably a genetic substrate underlying it.
  • Lombroso found in the late nineteenth century (modern criminologists tend to dispute some of his methodology) that promiscuous women can also be distinguished by a large gap between the big toe and next adjacent toe.

{730}
hide / / print
ref: -0 tags: recroding biopotential MOS-bipolar pseudoresistor date: 04-15-2009 22:03 gmt revision:0 [head]

Linear transconductor with rail-to-rail input swing for very large time constanct applications

  • Outlines the structure, theory, and use of MOS-bipolar pseudoresistors.
  • These devices can operate up to 330 GOhm!
  • Concise article.

{715}
hide / / print
ref: Legenstein-2008.1 tags: Maass STDP reinforcement learning biofeedback Fetz synapse date: 04-09-2009 17:13 gmt revision:5 [4] [3] [2] [1] [0] [head]

PMID-18846203[0] A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasticity with Application to Biofeedback

  • (from abstract) The resulting learning theory predicts that even difficult credit-assignment problems, where it is very hard to tell which synaptic weights should be modified in order to increase the global reward for the system, can be solved in a self-organizing manner through reward-modulated STDP.
    • This yields an explanation for a fundamental experimental result on biofeedback in monkeys by Fetz and Baker.
  • STDP is prevalent in the cortex ; however, it requires a second signal:
    • Dopamine seems to gate STDP in corticostriatal synapses
    • ACh does the same or similar in the cortex. -- see references 8-12
  • simple learning rule they use: d/dtW ij(t)=C ij(t)D(t) d/dt W_{ij}(t) = C_{ij}(t) D(t)
  • Their notes on the Fetz/Baker experiments: "Adjacent neurons tended to change their firing rate in the same direction, but also differential changes of directions of firing rates of pairs of neurons are reported in [17] (when these differential changes were rewarded). For example, it was shown in Figure 9 of [17] (see also Figure 1 in [19]) that pairs of neurons that were separated by no more than a few hundred microns could be independently trained to increase or decrease their firing rates."
  • Their result is actually really simple - there is no 'control' or biofeedback - there is no visual or sensory input, no real computation by the network (at least for this simulation). One neuron is simply reinforced, hence it's firing rate increases.
    • Fetz & later Schimdt's work involved feedback and precise control of firing rate; this does not.
    • This also does not address the problem that their rule may allow other synapses to forget during reinforcement.
  • They do show that exact spike times can be rewarded, which is kinda interesting ... kinda.
  • Tried a pattern classification task where all of the information was in the relative spike timings.
    • Had to run the pattern through the network 1000 times. That's a bit unrealistic (?).
      • The problem with all these algorithms is that they require so many presentations for gradient descent (or similar) to work, whereas biological systems can and do learn after one or a few presentations.
  • Next tried to train neurons to classify spoken input
    • Audio stimului was processed through a cochlear model
    • Maass previously has been able to train a network to perform speaker-independent classification.
    • Neuron model does, roughly, seem to discriminate between "one" and "two"... after 2000 trials (each with a presentation of 10 of the same digit utterance). I'm still not all that impressed. Feels like gradient descent / linear regression as per the original LSM.
  • A great many derivations in the Methods section... too much to follow.
  • Should read refs:
    • PMID-16907616[1] Gradient learning in spiking neural networks by dynamic perturbation of conductances.
    • PMID-17220510[2] Solving the distal reward problem through linkage of STDP and dopamine signaling.

____References____

[0] Legenstein R, Pecevski D, Maass W, A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.PLoS Comput Biol 4:10, e1000180 (2008 Oct)
[1] Fiete IR, Seung HS, Gradient learning in spiking neural networks by dynamic perturbation of conductances.Phys Rev Lett 97:4, 048104 (2006 Jul 28)
[2] Izhikevich EM, Solving the distal reward problem through linkage of STDP and dopamine signaling.Cereb Cortex 17:10, 2443-52 (2007 Oct)

{329}
hide / / print
ref: Fetz-2007.03 tags: hot fetz BMI biofeedback operant training learning date: 09-07-2008 18:56 gmt revision:7 [6] [5] [4] [3] [2] [1] [head]

PMID-17234689[0] Volitional control of neural activity: implications for brain-computer interfaces (part of a symposium)

  • Limits in the degree of accuracy of control in the latter studies can be attributed to several possible factors. Some of these factors, particularly limited practice time, can be addressed with long-term implanted BCIs. YES.
  • Accurate device control under diverse behavioral conditions depends significantly on the degree to which the neural activity can be volitionally modulated. YES again.
  • neurons (50%) in somatosensory (post central) cortex fire prior to volitional movement. interesting.
  • It should also be noted that the monkeys activated some motor cortex cells for operant reward without ever making any observed movements See: Fetz & Finocchio, 1975, PMID-810359.
    • Motor cortex neurons that were reliably associated with EMG activity in particular forelimb muscles could be readily dissociated from EMG when the rewarded pattern involved cell activity and muscle suppression.
    • This may be realated to switching between real and imagined movements.
  • Biofeedback worked well for activating low-threshold motor units in isolation, but not high threshold units; attempts to reverse recruitment order of motor units largely failed to demonstrate violations of the size principle.
  • This (the typical BMI decoding strategy) interposes an intermediate stage that may complicate the relationship between neural activity and the final output control of the device
    • again, in other words: "First, the complex transforms of neural activity to output parameters may complicate the degree to which neural control can be learned."
    • quote: This flexibility of internal representations (e.g. to imagine moving your arm, train the BMI on that, and rapidly directly control the arm rather than gonig through the intermediate/training step) underlies the ability to cognitively incorporate external prosthetic devices in to the body image, and explains the rapid conceptual adaptation to artificial environments, such as virtual reality or video games.
      • There is a high flexibility of input (sensory) and output (motor) for purposes of imagining / simulating movements.
  • adaptive learning algorithms may create a moving target for the robust learning algorithm; does it not make more sense to allow the cortex to work it's magic?
  • Degree of independent control of cells may be inherently contrained by ensemble interactions
    • To the extent that internal representations depend on relationships between the activities of neurons in an ensemble, processing of these representations involves corresponding constraints on the independence of those activities.
  • quote: "These factors suggest that the range and reliability of neural control in BMI might increase significantly when prolonged stable recordings are acheived and the subject can practice under consistent conditions over extended periods of time.
  • Fetz agrees that the limitation is the goddamn technology. need to fix this!
  • there is evidence of favortism in his citations (friends with Miguel??)

humm.. this paper came out a month ago, and despite the fact that he is much older and more experienced than i, we have arrived at the same conclusions by looking at the same set of data/papers. so: that's good, i guess.

____References____

{565}
hide / / print
ref: Walker-2005.12 tags: algae transfection transformation protein synthesis bioreactor date: 03-21-2008 17:22 gmt revision:1 [0] [head]

Microalgae as bioreactors PMID-16136314

{500}
hide / / print
ref: notes-0 tags: global warming bayes politics plik-l biofuel oil economics date: 11-21-2007 22:20 gmt revision:4 [3] [2] [1] [0] [head]

This was written for the plik-l mailing list, Nov 16 2007


I actually had a bit of an argument yesterday with my dentist, no less, about global warming:
  • Dentist: Hello, how are you today?
  • Tim: Ok.
  • D: Are you still in school?
  • T: <defers complicated explanation for the simplified>
  • D: Oh, so do you believe in global warming?
  • T: <cites scientific study, like http://www.ipcc.ch/ipccreports/assessments-reports.htm>
  • D: Well, i don't believe in it but even if it is happening, nobody is going to stop burning gas.
  • T: Yea, but if gas and electricity were more expensive, then people would make better economic decisions, smaller cars etc.
  • D: That would just prolong the supply. Oil is a great source of energy, and we are not going to stop using it until it become economically infeasible to do it. So, why worry? Oil will be depleted and the C02 will be stuck in the atmosphere, if not by us then by some other country that needs cheap energy to grow its economy, eventually. Economics.
  • T: You seem to be hinting of China, I guess. But, if our leaders decided to let the price of oil float to where it should be, and did not fight wars over it, then there would be greater economic impetus & possibly government funding to develop alternatives to oil. This would give us some energy-independence.
  • D: We are not in iraq for the oil. That's enough now, open up!
  • T: Wait wait! But don't you know what global warming will do to the envirnoment? More storms, droughts, floods, famines, etc - all very expensive, terrible.
  • D: I do not think there is sufficient organization in the world to impose the true costs of burning oil - e.g. the cost, accumulated over the future, of present greedy practices - upon present consumers.
  • T: True, i suppose if we integrated up, the cost would be almost boundless. Hence we should stop burning oil right now!
  • D: A responsibility to the future is not in the nature of man. They eventually die, and are selfish, greedy, and lack foresight during their lives. Besides, abstaining from oil imposes a severe economic disadvantage.
  • T: But what about their - your! children? and the climate then?
  • D: They are going to be rich dentists. See, I'm charging you $50 for 15 minutes of work. It's only going to get better.
  • T: Not if the economy collapses. It seems we have based it on unsustainable growth, fueled by unreasonably cheap energy. This could happen in your lifetime, or mine - and your kids. Present luxury and high wages are based on the efficiency / cheapness of transportation of goods into the US, and the developed world's exploitation of the developing world.
  • D: No. It is based on the labor/economic efficiency of manufacturing and agriculture. Anyway, take Europe for example - the price of oil there is high, and their economy is humming along.
  • T: Yet efficient manufacturing and agriculture is somewhat dependent on cheap transportation. As for Europe, that's because they tax oil to pay for public development, among other things. And Europeans consume half the oil of their American counterparts.
  • D: A gas tax that large would never happen here. People would go nuts, such a law would never pass!
  • T: True. The political system is irrational and irresponsible, but I can't think of an alternative structure. Humans were not designed for this, such responsibility!
  • D: If you keep talking I'm going to have to charge more.
  • T: <opens mouth>

Mostly I'd have to agree with the dentist - the oil is going to be burned eventually, because it is just such a cheap source of energy. We are going to have to deal with the consequences. However, for coal - of which we have a far greater supply, and is considerably more dangerous / expensive to obtain - there is good reason to search for alternatives, and putting a tax on oil/natural gas now fund development of alternatives is probably very future-responsible, and will shift the energy climate so we relinquish coal (and maybe some oil) earlier, resulting in less CO2 in the atmosphere.

There are infinitely many things more worthy/long-range responsible than the war, but our leaders have not touched on that. Correct me if I'm wrong, but there is little evidence that they even measured the worth of all alternatives, and decided rationally, based on integrating (over time and path probability) best-of-present knowledge of benefits and consequences. Or maybe they decided rationally, but with the worth of alternatives measured *personally*. It is this that truly angers me.

Bayes for president 2008!

Comments:

{475}
hide / / print
ref: bookmark-0 tags: neural recording companies electrodes wireless bioamplifier germany date: 10-22-2007 01:39 gmt revision:2 [1] [0] [head]

http://www.neuroconnex.com/ -- looks like they have some excellent products, but not sure how to purchase them.

  • links to specification sheets are broken.
  • they have a closed-loop stimulator for treatment of Parkinsons etc. cool!
also see Mega biomonitor. (14 bit resolution)

{371}
hide / / print
ref: notes-0 tags: recording tech tbsi biosignal telemetry date: 05-20-2007 16:40 gmt revision:1 [0] [head]