You are not authenticated, login.
text: sort by
tags: modified
type: chronology
hide / / print
ref: -0 tags: Balduzzi backprop biologically plausible red-tape date: 05-31-2022 20:48 gmt revision:1 [0] [head]

Kickback cuts Backprop's red-tape: Biologically plausible credit assignment in neural networks

Bit of a meh -- idea is, rather than propagating error signals backwards through a hierarchy, you propagate only one layer + use a signed global reward signal. This works by keeping the network ‘coherent’ -- positive neurons have positive input weights, and negative neurons have negative weights, such that the overall effect of a weight change does not change sign when propagated forward through the network.

This is kind of a lame shortcut, imho, as it limits the types of functions that the network can model & the computational structure of the network. This is already quite limited by the dot-product-rectifier common structure (as is used here). Much more interesting and possibly necessary (given much deeper architectures now) is to allow units to change sign. (Open question as to whether they actually frequently do!). As such, the model is in the vein of "how do we make backprop biologically plausible by removing features / communication" rather than "what sorts of signals and changes does the brain use perceive and generate behavior".

This is also related to the literature on what ResNets do; what are the skip connections for? Amthropic has some interesting analyses for Transformer architectures, but checking the literature on other resnets is for another time.

hide / / print
ref: -2018 tags: biologically inspired deep learning feedback alignment direct difference target propagation date: 03-15-2019 05:51 gmt revision:5 [4] [3] [2] [1] [0] [head]

Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures

  • Sergey Bartunov, Adam Santoro, Blake A. Richards, Luke Marris, Geoffrey E. Hinton, Timothy Lillicrap
  • As is known, many algorithms work well on MNIST, but fail on more complicated tasks, like CIFAR and ImageNet.
  • In their experiments, backprop still fares better than any of the biologically inspired / biologically plausible learning rules. This includes:
    • Feedback alignment {1432} {1423}
    • Vanilla target propagation
      • Problem: with convergent networks, layer inverses (top-down) will map all items of the same class to one target vector in each layer, which is very limiting.
      • Hence this algorithm was not directly investigated.
    • Difference target propagation (2015)
      • Uses the per-layer target as h^ l=g(h^ l+1;λ l+1)+[h lg(h l+1;λ l+1)]\hat{h}_l = g(\hat{h}_{l+1}; \lambda_{l+1}) + [h_l - g(h_{l+1};\lambda_{l+1})]
      • Or: h^ l=h l+g(h^ l+1;λ l+1)g(h l+1;λ l+1)\hat{h}_l = h_l + g(\hat{h}_{l+1}; \lambda_{l+1}) - g(h_{l+1};\lambda_{l+1}) where λ l\lambda_{l} are the parameters for the inverse model; g()g() is the sum and nonlinearity.
      • That is, the target is modified ala delta rule by the difference between inverse-propagated higher layer target and inverse-propagated higher level activity.
        • Why? h lh_{l} should approach h^ l\hat{h}_{l} as h l+1h_{l+1} approaches h^ l+1\hat{h}_{l+1} .
        • Otherwise, the parameters in lower layers continue to be updated even when low loss is reached in the upper layers. (from original paper).
      • The last to penultimate layer weights is trained via backprop to prevent template impoverishment as noted above.
    • Simplified difference target propagation
      • The substitute a biologically plausible learning rule for the penultimate layer,
      • h^ L1=h L1+g(h^ L;λ L)g(h L;λ L)\hat{h}_{L-1} = h_{L-1} + g(\hat{h}_L;\lambda_L) - g(h_L;\lambda_L) where there are LL layers.
      • It's the same rule as the other layers.
      • Hence subject to impoverishment problem with low-entropy labels.
    • Auxiliary output simplified difference target propagation
      • Add a vector zz to the last layer activation, which carries information about the input vector.
      • zz is just a set of random features from the activation h L1h_{L-1} .
  • Used both fully connected and locally-connected (e.g. convolution without weight sharing) MLP.
  • It's not so great:
  • Target propagation seems like a weak learner, worse than feedback alignment; not only is the feedback limited, but it does not take advantage of the statistics of the input.
    • Hence, some of these schemes may work better when combined with unsupervised learning rules.
    • Still, in the original paper they use difference-target propagation with autoencoders, and get reasonable stroke features..
  • Their general result that networks and learning rules need to be tested on more difficult tasks rings true, and might well be the main point of this otherwise meh paper.