You are not authenticated, login.
text: sort by
tags: modified
type: chronology
hide / / print
ref: -0 tags: Moxon ceramic array electrode lithography date: 07-12-2012 23:05 gmt revision:3 [2] [1] [0] [head]

IEEE-1275580 (pdf) Ceramic-based Multisite Electrode array for Chronic Single-Neuron Recording

  • Their substrate is polished to 35-50um thick
  • patterned using standard lift-off lithographic techniques
  • four electrodes per shank
  • The ceramic is considerably stiffer than silicon (table) -- 372 Gpa vs. 190 Gpa.

hide / / print
ref: -0 tags: Seymour thesis electrode lithography fabrication date: 02-05-2012 17:35 gmt revision:4 [3] [2] [1] [0] [head]

Advanced polymer-based microfabricated neural probes using biologically driven designs.

  • References {1109}
  • Thermal noise from 280 um^2 or 170 um^2 gold recording sites much higher than PEDOT coated sites.
  • Used an interdigitated contact-free probe for measuring insulation impedance change. Very smart!
    • Water molecules will diffuse 15 um / minute in parylene (Yasuda, Yu et. al 2010).
    • In the frequency range critical for neural recording and stimulation, 500-5k, impedance moculus decline was small.
    • 1 hr soak at 60C.
  • Chapter 3 details 60-day soak of Parylene-C + reactive parylene insulation performance testing.
    • Regular parylene seems to work perfectly fine, no better than the PPX heat-treated devices.
    • Heat treatment does improve quality -- 200C in a vacuum oven for 2 days. (Li, Rodger et al 2005)
      • However -- this increases the brittleness.

hide / / print
ref: Wise-1970.07 tags: Wise MEA silicon gold lithography date: 01-03-2012 19:05 gmt revision:3 [2] [1] [0] [head]

IEEE-4502738 (pdf) An Integrated-Circuit Approach to Extracellular Microelectrodes

  • Used lithography techniques & to make SiO2 & Au electrodes.
  • 2um tips.
    • Back then, small tips were deemed good; nowadays, we want larger, lower-impedance tips (fad?)
  • Most previous work is glass insulated metal electrodes [1][2]
    • C. Guld, a glass-covered platinum microelectrode. {1014}
  • Probes cannot exceed more than 50um from the edge of the chip carrier without cracking, which limits how close one may get to a given cell.


Wise, Kensall D. and Angell, James B. and Starr, Arnold An Integrated-Circuit Approach to Extracellular Microelectrodes Biomedical Engineering, IEEE Transactions on BME-17 3 238 -247 (1970)